Article
Editor’s Note: What follows is an exhaustive overview
of survival in a sustainable fashion. The author takes as his precept the complete collapse of modern civilization, and details
how a family or small community might survive indefinitely. Some of the ideas discussed in this paper might seem rather extreme,
and even offensive. However, we would urge that they should be considered and should not be rejected out of hand without a
well thought out argument. Facing less than the complete collapse of civilization, this article is still a goldmine of good
ideas for anyone seeking self-sufficiency and ecological sustainability.
Until the Last Drop
Visioning, Designing & Working Toward Sustainable Human
Society
Ronald Greek
Introduction
What to do - personal survival
What to do - eco-village
What to do - eco-city
What to do - society
Introduction.
Many interrelated factors show our present infrastructure
and processes are unsustainable. Our present technical infrastructure pollutes with enduring toxins. The existing farming
and food infrastructure depletes the water, minerals, biological basis of healthy natural food. But the majority of the 6+
billion population are dependent on the present global socio-economic-industrial infrastructure,
not merely for an economic livelihood, but for "life support" (i.e. water, food, shelter).
1. One symptom. The present infrastructure is utterly
dependent on consuming cheap, abundant oil, a situation which simply cannot be sustained. When humanity started its 100+ year
oil party most of the 1 billion or so individuals lived primarily in small, essentially self-sufficient communities. We have destroyed most of the incredible resource that oil represented not in building for
the long term, but on devices, uses, and an expanding population which requires ever faster destruction of this finite resource.
We have until the last drop flows to restructure our society to function within sustainable resource bases.
Even using optimistic estimates of remaining useable supply,
and holding consumption to present levels, oil supplies may be exhausted sometime before 2040. Sometime before exhaustion,
as wells dry up, oil will no longer be cheap, or abundant, and the present infrastructure will fail.
First Law. Non-renewable resources
must not be used in a manner that precludes their future re-use, and the maximum sustainable level of
renewable resource use is the minimum reliable level of renewal.
Fossil fuels represent a non-renewable resource that our use destroys, and which in the manner that we use it destroys other aspects of the environment.
Burning it for energy is silly, but at least when we are forced to stop, the impact is not directly life threatening. Using
fossil fuels for fertilizer to greatly expand food production is a direct threat to a population that has grown far beyond
levels that can be sustained in an environmentally favorable manner on renewable resources.
Second Law. Achievement of sustainable society globally requires
that every definable area, whether natural or political, maintain a population and consumption level sustainable within the
applicable borders, using the local resources or trade in a sustainable manner.
Fossil fuels represent a store of millions of years
of bio-fuel production, which has been consumed to fuel the industrial revolution and our modern society.
While man-made bio-fuels meet or exceed fossil fuels in quality, they are impossible to produce in the
quantity necessary to sustain the present industry.
Third Law. Personal or societal experimentation and development
requires the availability of excess resources.
There are, absent fossil fuels, means to sustainably obtain
clean water, nutritional food, appropriate clothing and shelter, but not in sufficient quantities to sustain the present population,
let alone provide any excess.
Even draconian conservation methods would not allow
for remaining fossil fuel use to continue long enough for population to lower to sustainable levels. The transition period
to a post-oil paradigm promises to be an unpleasant, dangerous time, during which
individual survival may be difficult, and civilization itself may be lost.
2. Act or ignore. We must shortly choose a new path, or we will
be forced into one.
If we ignore depletion and continue as we are, having good times
until the fossil fuel era ends, then we will face whatever disaster entails without any preparation.
If we choose to personally conserve, but do not build for the
post oil paradigm, we will miss out on the good times until the fossil fuel era ends, and still face whatever disaster entails.
The only responsible choice is to personally conserve,
and use "excess" resources to take advantage of the remaining time, cheap energy, and materials, preparing to step past the
collapse into the post-oil paradigm. NOW it is still possible to "click", or make
a phone call and have services or supplies delivered. After the crash becomes widely apparent, it will be too late for individuals
to afford significant preparations.
In the collapse of previous complex societies when
they were geographically isolated, individuals survived by dispersing into the wilderness, and foraging. There was, however,
always "civilization" elsewhere on the Earth. The collapse we face will essentially occur simultaneously worldwide. There
is virtually no "wilderness" left between complex centers in which to disperse, and a hunter-forager lifestyle requires a GREATER area per person than any other approach.
Do you have a known "life support" area to retreat to?
If you start immediately, while resources are still abundant,
you can create security for self, family, and community during the crash. Hopefully you can initiate or associate with a community
designed to function in the new paradigm. It will be dependent upon those who survive with knowledge, skills, and abilities
intact to create a positive future for humanity, if there is to be one.
"In every deliberation, we must consider the impact
of our decisions on the next seven generations." - Great Law of the Iroquois Nation
3. Hope for the future. There are those who are confident that
new technological developments will make oil irrelevant, indeed, that oil companies have suppressed such developments which
already exist. The conspiracy theorists may be right. We may indeed leapfrog the currently touted "hydrogen economy" into
"STAR TREK" technology. While I do not expect this leap, I acknowledge the possibility.
As touched on elsewhere, there is potentially much science for
us yet to learn. All of this, while offering great hope, also carries great risk. Eventually, somewhere, someone WILL develop
these, or something like them. While caution is certainly in order, we must therefore not allow irrational fears to restrain
us from continuing forward.
a. Nanotechnology. Working directly with atoms as building material
provides for the creation of devices that are incredibly strong, machines and electronic circuits that are microscopic, and
great savings in power. They also threaten to be "attackers" so small as to be undetectable until too late.
b. Zero Point Energy. If real, and tapped, zero point energy
offers seemingly unlimited energy, which could, however, also be used to build a real "doomsday device". Conspiracy theorists
claim many versions zero point technology have already been invented, and that the energy sales industries are keeping them
hidden to maintain the profitable sales of fossil fuels, and next perhaps the sale of photo-voltaic (p/v) panels. There are
intriguing stories, patents, and rumors. But until these devices are clearly demonstrated, we must act within available known
technology, products and knowledge.
c. Genetic Modification. We have already combined entities as
different as fish and strawberries, goats and spiders, mice and humans, etc. As the detail of our knowledge of genes increases,
and the size at which we can manipulate matter decreases, a logical progression of this science is to be able to directly
reprogram any gene sequence, and eventually to build from separate atoms. [Ed-However, this option is fraught with moral dilemmas
and potential abuse.]
d. Artificial Intelligence. It appears feasible for our devices
to eventually be smarter than present humans. Our evolution and learning is, for now, limited by our physical nature. We're
born, grow and learn slowly, forget things, age and decay, without being able to fully and truly pass on our experience. A
"mechanical/electronic" intelligence could physically grow and evolve as fast as manufacturing processes can build or make
changes. It can gather new information as fast as data can be transferred, "think" in multiple channels, and pass on it's
thoughts in an instant.
What to do?
On realization of the scope of the situation, individuals first
react by seeking to stock up and hide, or run to the wilderness and live off the land until things return to normal. But the
civilization we perceive as normal cannot continue. You must not only be able to survive the crash, but continue afterward.
What's needed is sustainable life support. Begin
at the level of the individual/family. While the present infrastructure continues to function, there is much that can be done
at relatively low cost to not only prepare for an economic crash, but to leapfrog past it to a post-oil paradigm. Once a crisis begins, it may be too late.
An earth sheltered home (thermal battery/mass &
moderation of temperature extremes) can protect your family from the elements, without external utility connections. Add water
collection/storage/recycling, a bio-intensive garden, and appropriate technology,
and you should be able to survive indefinitely. So, on to the details to consider in your planning.
1. Air. Critical for survival much beyond 3 minutes. Living
away from likely sources or flows of contamination is the simplest option. Rationally this means that YOU and your neighbors
should not pollute. In air pollution there are of course multiple factors, such as substance, volume, and quantity. To elaborate,
envision the Los Angeles valley on a clear calm Saturday afternoon. If one family decides to have a backyard charcoal cookout,
the neighborhood gets some smoke, but the effect on the city is insignificant. If every family has a cookout at the same time,
however, the air could quickly become foul.
It matters greatly what pollutive substance is being released,
how much each source is releasing, and how many sources there are. In general, the greater the standing population, the worse
you can expect any pollution problem to be.
a. There's not much you as an individual can do
about "open-air" contamination, other than NOT producing it yourself. (Remember that
"outside" is a relative term, the Earth itself is for all practical purposes a CLOSED container.) You need to be in a sealed
container...suit, home, building, etc., with an appropriate combination of air volume, renewal, and purification capabilities.
b. Indoor air quality in a relatively well sealed home can,
however, be affected significantly by relatively simple actions.
(1) First and foremost, avoid contamination in the first place.
Many of the adhesives and artificial materials used in present contractor construction of homes outgas dangerous substances,
often continuously, and especially when they burn. Also, items such as particle board, plywood, many household chemicals,
etc. release hazardous gases. Avoid using or storing these inside your home.
(2) Radon seepage from the ground may be a significant indoor
threat readily abated during construction by proper sealing and venting.
(3) Appropriate selection of indoor plants can significantly
improve air quality. (See Dr. Bill Wolverton's "How to Grow Fresh Air") Examples include Bosten Fern, Janet Craig (fern),
Rhododendron, as well as Dracaena marginata, English Ivy, Warneckel, Peace lily, Chrysanthemum, Gerber daisy, dwarf date palm,
bamboo palm, Warneckel, areca palm, Chrysalidocarpus, Lutescens, and Phoenix roebelenii.
(4) With sufficient plants growing in a closed greenhouse, a
breathable interior atmosphere can be maintained with essentially no active air exchange with the outside. Note, if the plants
are only producing oxygen during photosynthesis, there must be a large enough volume of air and plants for 24+ hours of clean
air to be produced during the shortest available sunlight period, and some allowance for overcast days.
In a sealed container, starting with good outside air, a person
can survive for about an hour for every 22.5 cubic feet of air. A 1200 sq.ft home, with 7 foot ceilings, should hold about
8400 cubic feet of air, or enough for a family of four to last for 3+ days.
Studies have shown that essentially equal photosynthesis takes
place in 5 grams of plant mass distributed in a square meter of open water, and in 10 kilograms of plant mass in a square
meter of forest environment. A clear implication is that while plants growing in "air" provide a larger standing mass, aquatic
plants are a greater source of oxygen regeneration. (Draw your own conclusions about damage we're causing to the ocean's ecosystem.)
(A) NASA studies indicate that one cubic meter of
actively growing wheat, grown hydroponicly under 24hr/day light, can meet the oxygen needs for one person, while producing
the food-value of about 1/3 of a bowl of cereal per day. The NASA research conflicts,
though, with the lower technology 2 year experience at "Biosphere II", where 3+ acres was not sufficient, when a relatively
extensive soil biosystem was included in the container. (Microorganisms in the soil and the concrete structure were found
to be absorbing oxygen.)
(B) Other experiments show that approximately 8 gallons of well
aerated algae in sunlight balances the breathing of a typical human. (Remember, you need enough "extra" air volume to carry
you past periods of dark/dim light.) If you're not bubbling the air thru the algae, set up a "surface area" of water for the
8 gallons at about 8 meters square.
(5) An airtight home must have a flexible lung (see Biosphere
II) to allow internal/external air pressure to remain equal, without actual exchange of air. It can be as simple as a large
trash bag on one end of a pipe that penetrates a wall. Typical atmospheric pressure changes due to weather may amount to 2%
to 5% of the volume of the sealed container. If you have a 1200 ft. sq. home (above), the "lung" should be between 168 and
420 cubic feet. (Don't panic, that's only a box 8 foot on each side max)
(6) Underground Greenhouse. In addition to "traditional" greenhouses,
relatively recent developments in natural lighting provide an opportunity to bring natural light into spaces not practical
before. Examine "Solartubes" (mentioned later also), which can route sunlight thru a relatively small opening. Some versions
have flexible tubing for the light, lending it to bends/curves for routing thru even thick shielding materials. It should
be possible, for example, to route the tubes from the roof of a single story home, down to the basement.
Short of burying your plants in the basement, or in underground
culverts, a simple pit, covered with an appropriate clear or translucent material, can serve to provide area for growing food
well into freezing weather.
Greenhouse coverings. Glass, plastic, etc., can be selective
surfaces, passing only the frequency and intensity of light needed for optimum growth. Direct or indirect lighting. There
are some indications that small cells of "dead air", even without an air tight membrane, can serve as a greenhouse to increase
temperatures for plant growth. (See shiny shade cloth?)
c. Bioremediation for Air Cleaning. The microbes in soil perform
a great deal of the "work" transforming waste materials into productive life. The Biosphere II project used a "soil reactor"
to clean the inside air. The basic concept is simply forcing air to the interior of several feet of healthy soil.
2. Water. Critical for survival much beyond 3 days. In some
areas, water is simply not a concern. Where it is, your home should contain a cistern capable of holding at a minimum the
survival (drinking, cooking, and minimal cleaning) water for your family for a year. Using the low typical rainfall for your
area, calculate the collection area needed to fill your cistern from rainfall.
a. All rainwater not directly collected for controlled storage
should be routed to a collection area for recharging the aquifer. If paving for walkways, patio's, etc. is not intended to
be used to route rainwater for collection, where practical the surfaces should be porous to allow the water to soak into the
ground.
b. Rain (in most places) is probably the safest "natural" water
available, and the least subject to human interference. (Flowing water, wells, pipelines, etc., are all of course subject
to "blockages", or contamination, somewhere "upstream".) Even if living in a relatively isolated area, all of the water sources
could be contaminated. In the case of groundwater, it may be decades after a "spill" that took place in the distance, before
the effluent starts to contaminate the water. [Ed-It is always a good idea to know how where the water table sits in your
area, and how the ground water flows. As a general rule, wherever there is open water-in a ditch, bog, stream or elsewhere-that
is the level of the water table at that point. The water table tends to slope with the contour of the land. Ground water also
tends to flow toward open outlets-that is, streams. However, many geology and many other factors can affect the water table
and groundwater flow. In settling upon a new area, it is always wise to look up any hydrological or geological studies of
the area.]
Similarly, for upstream surface flowing water, abandoned sites
may start to leak in the future.
c. Access to water, in many places, will be a significant restriction
as to how many people can sustainably occupy a given area. Estimating 7 gallons per cubic foot, every inch of rainfall on
a square foot is about 1/2 gallon that could be collected.
Assuming annual rainfall of 12 inches, a collection area of
about 6500 sq.ft. (an area 80 ft. on a side) could meet the needs of an individual. While collectors can be artificial surfaces,
they can also be part of the landscape (i.e. rock hillsides). A family of four would need a collection area 160 ft. on a side.
The amount of rainfall affects the required collector size.
Examples of water use:
20 gallon/day human cooking/consumption, bathing (5 min low
flow shower)
(x365= 7300)
+105 gallon/day garden (adjusted for cleaning/bathing graywater
use)
125
x365
45,625 gallons average annual water per person
(1) Basis of personal 20 gallon water estimate.
Five minute low-flow shower (2.5 gpm=12.5 gallon), up to several gallons per day drinking/cooking,
and several gallons in misc. washing.
(2) Basis of garden water estimate. Every linear foot of "soaker
hose" waters plants in the two square feet along its sides. To water 1,000 ft.sq. of crops requires 500 linear foot of soaker
hose. Soaker hose releases water at 1 gallon/minute/100 foot. 500 foot of soaker hose would release 5 gallons per minute.
With appropriate mulching, even in the hot summers of Yuma, Arizona, (plants exposed to direct sunlight) our garden survived
with two 12 minute soaks per day. A subsistence garden should get by with 120 gallons per day (15 or so of which could be
washing "gray water").
More precise watering (drip irrigation) of individual
plants, or a buried plant with an airspace between the water and the soil above (semi-hydroponic,
or see the "Earthbox") may lead to further reductions in crop water use.
(3) Most plants can only make use of 1/4 to 1/2 of the "candlepower"
that impacts their leaves in the summer, much of the excess sunlight results simply in heat, which the plant must shed by
evaporating "extra" water. In one test pad, where plants were put under 60% shade cloth near the end of the summer, THOSE
plants suddenly grew much larger than plants in direct sun. This might lead to a lowered estimate of the water consumption,
or greater production.
d. Purification. Plan on the need to clean your water supply.
(1) Probably the oldest water treatment method is filtering
through 3 to 5 feet of sand, which will remove many microorganisms, most debris, and most radioactive fallout. (Consider what
nature does in the soil, as water seeps downward toward your well.) As this filter ages, a gelatinous layer forms near the
top. While this contains numerous good bacteria, the top of your filter needs to be cleaned off and replaced regularly.
(2) Using standard plumbing parts, glass, etc., it should be
possible to assemble a solar still that would provide pure, distilled water.
(3) Ancient wisdom, supported by microbiological studies, found
that silver ions kill microorganisms. Simply storing silver in water helps. Running a small DC current (i.e. from a cheap
solar battery charger) through two silver electrodes submerged in the water distributes the ions and is said to make the water
a disinfectant. The Vedas, from India, reads "If you are not certain of the purity of your water, let it stand in a copper
vase for two days before drinking it."
e. Storage. The size of the cistern you should have is dependent
on the patterns of your water use, and rainfall collection. Too small, and your tank will overflow during a "good" rainfall.
Too big, and you've wasted space and money.
f. Atmospheric condensers. (Creating and collecting
"dew") Have you ever taken a pre-dawn walk thru a grassy field, and gotten your feet
soaked, even though it did not rain during the night? The grass radiates heat to a clear sky, cooling, while still surrounded
by moisture, or with moisture containing air blowing over it. [Ed-See Robert Forrester’s paper on dew collecting roofs.]
3. Food. Critical for survival much beyond 3 weeks. Industrial
farming, overgrazing, etc., has stripped the soil of many of the minerals essential to health, and killed off much of the
life in the soil.
That which is taken from the soil, must be returned to the soil.
It is essential that the nutrients in humanure and urine be
returned to the soil, well discussed in "Future Fertility, Transforming Human Waste into Human Wealth", by John Beeby.
"Live as though there is no tomorrow, but farm as though you
will live forever."
North African Bedouin proverb.
The obvious goal in gardening is to create the ideal
condition for each plant, of light, heat, moisture, air (roots and leaves), and nutrients. That which is taken from the soil,
must be returned. Can we undo our damage, yet "tilt" micro-ecosystems toward producing
crops that meet our needs? (Not necessarily our WANTS.)
a. The "success" in sustainable farming reported
for semi-tropical Cuba is about 1/4 to 1/3 of an acre per person. My personal experience
is that "traditional" backyard gardening would take the same, around 10,000 sq.ft. (1/4 acre) per person.
b. An excellent intensive gardening resource is John Jeavons,
and Ecology Action. Their presentation of the "biointensive" bed system projects feeding a person out of 1,000 sq.ft., is
among the best readily available. (The Biosphere II project officially had about 1300 ft.sq. of garden per each of the 8 scientists,
but they also had the entire 3+ dome.) Note, though, that Ecology Action materials are not "absolute" on the 1,000 sq.ft.
area, or on the actual sustainability of the system. In a 2002 personal discussion with a member of Running on Empty (www.runningonempty.org), Mr. Jeavons acknowledges that 4,000 sq.ft. is more likely the
longer term minimum garden, even for a vegetarian diet. .
(1) By assisting nature, biointensive beds create the most efficient
‘natural’ growth mediums. The necessary time (years for the miniature ecology to mature) and energy investment
(i.e. for the double digging) should prove to be a valuable long term asset, particularly during the crash, which should be
initiated immediately.
(2) While you will need to investigate crops that are appropriate
for your specific area, needs, and tastes, the general goal is to grow the largest amount of calories and nutrition in the
smallest area/smallest use of resources.
(3) For full benefit, the entire Ecology Action "system" must
be used.
(A) Permanent raised "beds" for plants, sized such that you
can reach all of the plants from the permanent surrounding path without stepping in the bed. Trellis’s should be provided
for climbing plants, positioned to avoid shading shorter sun loving plants. The beds can be constructed of lumber, framed
concrete, tires, etc. The entire soil surface should be mulched over, with only your intended crops showing.
(B) Dig to loosen the soil to a depth of 24", allowing easier
root growth, and easier access for the roots to air (oxygen), which is essential to maximize plant growth.
(C) Seed/plant using triangle pattern spaced such that the mature
plant leaves touch and completely shield the soil.
(D) Compost. Recycled organic matter, fed to the soil microorganisms
to keep them healthy and active, provides the nutrition for your crops. Probably 70% of the mass of crops grown must be returned
to the soil as compost to maintain the soil health.
(E) Something is always growing in the soil, even if it's a
crop that is only to be "plowed under".
c. NASA funded research (i.e. aeroponics - roots suspended in a mist of nutrients), has implications of feeding a person from 22.5 sq. Meters (about 16' on
a side). Due to the high-tech systems, long term reliance in a crisis situation is questionable. If you
have the capability though, it could be a vital tool in a crisis situation. Their research, though, has focused on special
crops tailored for a narrow range of living conditions.
d. Container gardening.
(1) The Earthbox claims significant improvement
over random soil or mere containers, perhaps offering production between the biointensive and the NASA approach. Their patented
system appears to be nearly identical to non-circulating methods shown in various hydroponics and aeroponics
texts, which is to provide the plant roots with unlimited access to water, nutrients, and air, without drowning or suffocating
them. The textbooks show 1" to 3" of soil held on a grid, over a 1/2" to 3" air space, over water maintained in steady depth
of 1" to 3". The water depth must be carefully maintained. While plant roots CAN grow into water, if left exposed to the air,
these roots not only dry out, but in 1 to 3 days, change, irreversibly, from water absorbing to air breathing roots. After
the change, if re-submerged, the root drowns, and kills the plant.
(2) Above ground beds. There are various approaches which appear
to offer benefits similar to the "Earthbox", on a larger scale. Some are shown in the book "Amaranth to Zai Holes: Ideas for
growing food under difficult conditions", for sale in hard copy, or online electronically free from http://www.echonet.org/. In addition to shallow pool gardens (like a large "Earthbox"),
they discuss gardens where the watering method is a waterproof layer, covered with a wicking material, then 3" to 6" of compost
(not soil, for lighter weight, and better nutrition). A method such as an upside down jar of water is used to keep the wick
wet.
e. Aquaponics. This system is a combination of a fish tank/pond
and a garden. The tank water is circulated through the garden, which fertilizes the garden, and cleans the water for collection
and pumping back to the fish.
f. Algae. With ideal growing conditions, the mass of live algae
in a tank can double every 24 hours. (Yes, I've found I can grow spirulina in the alkiline water I get by flushing "fresh"
water thru our local sand... It is supposedly healthy, but I've yet to acquire the taste....) That said, the rapid growth
of algae provides the opportunity for production of "biological waste" for composting to enrich the soil.
g. Leaf and grass concentrate? There are numerous edible leaves,
and more that can be used to produce an edible product when the excess fiber is removed. You can even use dried leaves.
(1) Dried Leaves. When leaves are brittle, remove coarse stems
and grind to a fine powder. Dried leaves can be easily ground in a hand cranked corn mill, an electric grinder, a household
blender, or a traditional stone metate grinder. Make sure leaves are very dry or they will clog the grinders. About 20% of
the flour in most recipes can be replaced with leaf powder. Experiment with how much leaf powder you can add to recipes without
an unacceptable effect on flavor or texture. About one tablespoon or more of leaf powder can be taken directly daily. Keep
the leaf powder in a well sealed container, away from light and in a cool place.
(2) Fresh Grass / Leaves. Making Leaf Concentrate at Home. Wash
and cut leaves into pieces 2 - 3" long, use only fresh green leaves known to be edible, such as alfalfa, Swiss chard, lambsquarters,
blackeye peas, wheat, mustard, kale, or collards. While many other plants make good concentrate, it is safer for beginners
to stick with commonly eaten leaf crops. Grind the leaves to a pulp. (Use a manual meat grinder or flour grinder, a wheat
grass juicer, or a household blender. Fruit and vegetable juicers usually clog up quickly from the large amount of fiber in
leaves.) This step ruptures the cell walls of the leaves liberating protein and other nutrients.
Press as much juice as possible from the pulped leaves, and
pour the pulped leaves into a sheer nylon or polyester cloth of the type used for curtains. Squeeze out as much juice as possible.
You should not be able to squeeze any juice out of a handful of this pulp when you are done.
Heat the juice rapidly to the boiling point, stir very gently
to prevent burning and remove from heat as soon as the leaf juice boils. A green curd should float to the top. Separate the
curd that forms in the heated juice in a closely woven cloth. When this wet curd has cooled, squeeze the "whey" out of the
curd. It should be dry enough to crumble. You may want to make a very simple press with a wooden 2" x 4" x 8' lever to apply
more pressure than you can with just your hands. This can be used for pressing the juice from the pulped leaves as well.
What remains in the cloth is leaf concentrate. 10 lbs. of leaves
should give you roughly 1/2 lb. leaf concentrate; 4 1/2 lbs. of fiber for mulch, compost, rabbit or goat feed; and 5 lbs.
of "whey" for watering plants. If not used right away, leaf concentrate can be dried at about 120 F, ground to a fine powder,
and stored for later use in airtight plastic bags away from any light. Good Luck!
h. Food Storage. The present, relative abundance
of food, and secure supplies, is a hollow shell that will collapse when oil ceases to support it. When you are once again
dependent on your own garden or local farms, crop failure can literally mean starvation. If you have the money, high-tech (high cost) freeze-dried foods are available, with shelf lives of 20 years or so. Good backup
for a crash induced emergency, and there are distinct short term advantages for concealment by avoiding the need to garden,
but when they are gone, they are gone.
(1) A example of home-grown food storage per person is:
325 lb. Grain (i.e. whole wheat, pasta, oats, rice, barley,
several years)
80 lb. Legumes (various beans, peas, lentils, seeds, etc., 5
to 10 years)
50 lb. Milk/dairy/eggs (dried, 5 years)
20 lb. Meats (dried, 18 months)
10 to 30 lb. Fruit/vegetables (dried, 2 to 3 years)
60 lb. Sweeteners (sugar, honey, syrups, etc., indefinite)
40 lb. Fats/oils (butter, nut butters, natural cooking oils,
etc. Note:
Hydrogenated processed oils are Not nutritive, 2 to 3 years)
20 lb. Sprout seeds (alfalfa, all whole grains, beans, lentils,
cabbage, radish,
broccoli, etc., 2 to 3 years)
1 lb. Leavenings (yeast, culture samples can be kept reproducing
indefinitely)
5 lb. Salt (despite its OVERUSE in present society, it becomes
critical in the
absence of processed foods, indefinite)
(2) Most foods can be safely and adequately stored
using sun powered drying. If you have air-tight containers (even clay) an additional
‘layer’ of protection is afforded by vacuum packaging....even the level of vacuum gained by human lungs and a
straw, or better, that by water flowing out of sealed containers.
(3) Throughout history there are stories of storing food in
covered pits that remained fresh for months, if not years. When lacking any other means of storage, dig a hole, line it with
dry grass, twigs, leaves, etc., and stack you food inside in a manner such that air can circulate around it. Then seal the
top.
(4) Chemical fertilizer gardening. I include this under "food
storage" because I consider it just as temporary and unsustainable a measure as storage..
Readily available and cheap (at the moment) are the typical
plastic "kitchen" garbage bags, I think they're something like 14 gallon bags. I suggest 2,000 bags and enough fertilizer
for 2,000 plants for one season. "Miracle Grow" (tradename) and other chemical fertilizers are also cheap for the moment.
Put bluntly, dig a hole, line it with the trash bag, backfill
with local soil, bio waste, etc., and fertilize per instructions on the container. You're NOT creating a sustainable food
bed, but you will grow an emergency crop.
i. Sprouting. This natural process decreases the carbohydrate
content, and greatly increases the vitamin and protein content, as well as increasing the volume and mass. (Tomato or potato
sprouts are poisonous, as are all seeds treated with fungicides, etc.)
j. Foraging. A small bite of certain plants is enough to kill
an adult. Be certain of what you're doing. However, you may consider this as potential protection for your food crop. If it
doesn't look like a garden, and doesn't look like normal vegetables, perhaps anyone encountering it will leave it alone. Hunter/forager
societies are estimated to have required a square mile to support each individual.
k. Protein. The human diet needs 53 to 58 grams of protein per
day (.47 gram per kilogram, or .213 gram per lb., of body weight) consisting of 22 essential amino acids. Eight of these cannot
be manufactured by the human body, and must be present in the right proportions. A diet incomplete in protein leads to various
physical infirmities (think of the photos of third world children, skin and bones, but with gas bloated abdomens). Regardless
of a surplus of any given amino, the ability of the body to utilize the proteins is limited by the absence of any of the eight
that is not present in sufficient quantity. The excess are utilized by the body as mere carbohydrates.
(1) Eggs are essentially complete. Most meats are complete.
While present feedlot production wastes higher quality foods that are used as animal feed, chickens, cows, goats, etc. can
feed on forage, turning unused/compost material into essential protein. (Ruminants, such as cows, don't need the protein and
grains in their diets that they are fed in feedlots. They do however need nitrogen materials, which they convert to protein.)
(2) Appropriate combinations of plant materials can result in
a meal that has a complete protein matrix. Details of the concept, food sources, mixes, and tradeoffs are described in Diet
for A Small Planet, by Frances Moore Lap.
Soybean and Mung, and some peanuts approximate meat in completeness.
Sunflower seeds contain greater growth promotion nutrition than
does meat.
Rice is missing Isoleucine & Lysine, but if served in combination
with cheese, or most beans, becomes a complete protein.
l. Pit or Underground Greenhouse. As earth sheltering provides
a more stable climate for human habitation, so it does for your garden. If you have time and resources to have specialty structures
constructed, great. If not, improvise SOMETHING. Use the glass from picture frames from the wall over individual holes...
Microbiology. The microbes in "healthy" soil perform a great
deal of the "work" transforming waste materials, and even inert rock dust, into a form which can be used by your crops.
4. HVAC
The temperature of the earth at a depth of approximately 20
feet is essentially stable at the annual average surface temperature. A home at that depth would probably not need any mechanical
HVAC...nor would it have much of a view.
The technical aspects of correct earth sheltering are explained
well by John Hait in his book "Passive Annual Heat Storage". The techniques will improve the feel of even a traditional home,
but works best in homes specifically built to take maximum advantage of the buffering.
The greatest source of energy on earth is the sun, which appears
to travel a fixed pattern in the sky that is readily estimated. To maximize the benefits of shade, or of solar collection,
the sun’s pattern of movement must be taken into account.
a. To artificially "lower" your home, insulate the
ground for 20 feet out around your home with three layers, separated by heavy plastic sheets for waterproofing, of "Dow Blue
Styrofoam", white styrofoam board, or other appropriate insulation, then carefully cover the insulation with dirt, sand, gravel,
etc to protect it from weathering. Low-tech/natural insulation layers, such as grass,
leaves, etc., with some waterproofing means or even layered with a high clay soil will help, but eventually need to be replaced.
Berming earth up the sides of the home provides additional protection from the large temperature changes of open air. Even
the roof can-if you chose-have a layer of earth on top of the insulation. The soil need only be thick enough for the plants
grown there.
b. A low energy method to tap the stable ground temperature
for a surface home is a pipe leading straight down into the ground (as in a driven well) 20 to 30 feet. Any appropriate method
of routing water down and back up in a sealed system (i.e. a small pipe inside a larger pipe) can allow a transfer of temperature
to/from the depth. Each pipe can be expected to heat/cool the ground in a 3 to 4 foot diameter circle, therefore space the
"wells" 3 feet apart. When the surface is significantly cooler than the bottom, a natural thermosyphon should occur. With
appropriate manifolds and valves, warmed or chilled water can be pumped from/to collectors/radiators or circulated in a hydronic
system of pipe embedded in a concrete floor/wall.
c. Equator?facing windows, vertical or angled to be 90ş to the
noon sun in the winter can provide significant passive solar heating in the winter while minimizing glass exposed to summer
sun. (In the summer, the sun rises and sets NORTH of the East/West glass alignment, and the glass can be shaded on the outside.)
Further summer solar gain can be avoided by almost any approach that provides a well ventilated shade area about a foot from
the main structure.
d. Skylights. Conventional skylights admit too much heat in
the summer, and require a large opening in the structure of your home. More diffused and useful light is admitted, with less
heat, by "lighttubes", essentially mirrored pipe with a lens cover on each end. Venting can be separately done with insulated
pipe with removable caps. The combined opening in the structure is much smaller, the risk of weather damage is less, and maintenance
is less. These are options which have potential for development not only as lighting, but heating, cooling, and power, and
crops in a controlled environment.
e. Fireplace. An interior fireplace must have an external air
source. Since the fireplace is probably only used when it is cool outside, arrange the air source such that it draws from
the pantry, which would then be vented to the outside, cooling the pantry. Consider a fireplace in a "sunken" family room.
Water filled pipes around the fireplace, and in the higher floor of the rest of the house, could provide auxiliary heat by
thermosyphon.
Solar well. Along a similar line of thought to putting the fireplace
in a pit, consider wells or pits facing the south winter sun. Glass covered, reflector lined, these should be essentially
winston cones. At the bottom, place a solar collector, a coil of pipe, or a large tank. During the day you will then have,
on the bottom, an intensely hot tank of water. Pipes run "up" to the floor of the house in a thermosiphen, capable of keeping
the floor warm without a powered pump. A simple valve would be the only required moving mechanical part, to shut the system
down when desired.
f. Roof/external mounted tube collectors, flat or with reflector
concentrators, can heat water during the day, or cool water during the night. Cooling can be enhanced by misting or water
evaporation. Used for cooling, the circulating water might "thermosiphon".
g. Basic structure. In the end, ANY system that provides you
a waterproofed, insulated living space that is heavily insulated, has extensive thermal mass or other thermal storage, and
a practical means to get heat into and out of the storage can provide a comfortable home.
5. UTILITIES.
a. Energy. Frankly, to survive as more than a "dirt farming
peasant", you need a power source beyond human or animal muscle, that does NOT relying on fuel, or power delivered from some
unseen and uncertain source. Unless we suddenly leap to "STAR TREK" technology, the future energy picture will be one of greatly
reduced personal energy use. Run wiring capable of handling separate a/c and d/c loads. What do you REALLY need?
(1) Electrical needs. Long distance communications, computers,
other electronics, etc. NEED electricity. While humanity USES electricity for many other purposes, many uses could be handled
by other means. Why would anyone NEED to generate electricity, to spin and heat an electric dryer, when hanging wet clothes
in a sunlit space would also dry the clothes, and perhaps the drips could water the plants? Even refrigeration CAN be driven
directly from a windmill or waterwheel. Ice can be made using a solar concentrator or by applying a hand-pumped vacuum to
a container of water. Low levels of locally produced electricity CAN provide the power to maintain a technological, learning
and developing society.
(2) Power sources. The prime energy source on Earth is the sun.
It is readily concentrated into a limited area with simple mirrors or other reflective/convective surfaces. With technology
we understand, and can produce today, we can produce electricity from the sun by:
(A) Turning generators with moving wind, caused by the sun (natural,
and artificially induced wind up what is essentially a smokestack) Power is intermittent.
(B) Turning generators with moving water, caused by the sun
(natural, and artificially induced means to move water to a higher location, or from a pressurized container.) Power can be
constant and regulated. Most naturally occurring cases of water in a high gravity location have already been exploited.
Where tanks can be positioned at significant differences in
altitude (i.e. 100'+) water pumped to the higher tank can serve as a battery, turning a generator when dropped again through
a turbine. Factors:
1kw = 1.3 hp
Water flow in cubic feet/second x height difference in feet
divided by 8.8 = hp
1 cubic foot = 7.48 gallon
Assume a two 10,000 gallon tank, one 100' higher than the other.
To generate 1kw of power
1kw = 1.3hp = flow/second x 100 / 8.8
1.3 x 8.8 = flow x 100
11.44 = flow x 100
11.44 / 100 = flow
.1144 cubic feet = flow
.1144 cubic feet = .856 gallon/second
10,000 gallon tank / .856 = 11,682 seconds / 60 / 60 = 3.24
hours of operation for this "battery".
Given the above, consider a well where the water level is more
than 100 feet below the surface. A surface tank could be the size of a modest "above ground" swimming pool. During the day
a small windmill could easily fill the pool, providing the evening’s power for light and electronics.
(C) Turning generators with "steam" engines (water
and other medium, open and closed cycle). Power can be relatively constant and regulated by using the sun to heat a storage
medium, such as water in an insulated tank that then provides power at night. In example, since closed cycle heat engines
are driven by a difference in temperature, as the outdoors cools at night, and the contents of an insulated tank remain warm,
the power available may actually increase. Light concentration can DRAMATICALLY increase available power. The "steam" can
also be heated by growing, collecting, and burning bio-fuels.
(1) Open cycle. The working fluid, which is heated to the boiling
point, is channeled to expand and push a contained piston or turbine, and then vented to the atmosphere. The typical working
fluid is water, which may in some locations be too scarce a resource to "waste" as steam. This engine design also "wastes"
the energy used to heat the water up to the steam point.
(2) Closed cycle. The working fluid, which is heated
to the boiling point, is channeled to expand and push a contained piston or turbine, then routed to a condenser for cooling
below the boiling point, and finally pumped back into the heating chamber. In theory (Carnot) the efficiency of a heat engine
is limited to nc = T1(hot gas temp)-T2(cool gas temp) / T1 . Historically, low temperature solar engines
are operated using freon or butane, in temperatures of 80ş C. In a low-technology situation, though, it
may be necessary to use only "natural" mediums. (Perhaps water in a closed system that operates partially in a vacuum, so
that water boils at a lower temperature.)
(3) Food for thought. As shown by the closed cycle
engine, the useable work is done by the change of state from liquid to gas, not the rise in temperature to the boiling state.
Open cycle engines (think of the old steam engines) lose ALL of this initial heating energy. Closed cycle engines retain a
significant portion, but must still clearly cool the medium before reinjection to the vaporization chamber. Rather than directly
using steam to turn a generator, I've wondered about using steam to pressurize a tank of water (insulated from the water some
way?) then using the water to spin a micro-hydro system.
(D) Solar photo-voltaic. Direct conversion of light to electricity.
The panels remain a "high tech" item to produce, are fragile, and essentially impossible to repair in a low tech environment.
Power is ONLY supplied when light shines directly on the panel. Light concentration is likely to overheat the panel, and cause
it to "burn out".
(E) Internal combustion. Bio-fuels can be burned in internal combustion engines, for propulsion or generation. This is not, however, an efficient
means of providing a conversion from sunlight to motion or electricity. Bio fuels can also be burned to produce heat.
(1) Biodigester. Animal excreta, food and crop scraps, etc.
are placed in a sealed tank (can be as simple as one drum upside down inside another slightly larger drum) for controlled
environment rotting. Most of the gas produced, primarily methane, accumulates in the upper upside down drum, where it can
be lead off in hoses for use as a fuel. Using human excreta only the "minimum" for a practical useable product would be input
from 15 people. For a practical "village built" system the upper limit appears to be 300 people.
(F) Chemical reactions. Should you find yourself with large
quantities of refined metals, guidance for creating large expedient batteries is found in "How to Recycle Scrap Metal into
Electricity", by John Hait.
(G) Aether / Zero Point Radiation / Science Fiction? There are
ongoing experiments on theories whereby at least heat, if not electrical energy itself, can be obtained from "sub atomic"
activity, that may or may not be "radioactive" in nature. There are numerous "conspiracy theories" floating around that there
are already successful devices in operation. Lacking evidence, or the ability to buy a device, or "guaranteed" construction
plans, this remains entertaining reading, but not a proposal on which to bet your life.
(3) Muscle power. While human powered generators are a poor
choice for other than short term use, human muscle-the legs in particular-can meet many needs.
In terms of weight carried, speed and distance, per power used,
a bicycle is the most efficient vehicle available. The relatively recent "rediscovered" recumbent bicycles are even more efficient
than the traditional, high seat bicycles. A specialized bicycle of this type has been pedaled at sustained speeds of over
65 mph - try THAT on your mountain bike... If you do your "shopping", you can probably find a recumbent (new) for a price
easily comparable to any "department store" traditional bicycle. (2003 I bought one new for $300, 2004 for just over $100)
The book, Pedal Power in Work and Leisure, James C. McCullagh,
relates many human powered devices, including a pedal powered winch used to pull a plow.
(4) Power storage. Fossil fuels are merely stored ancient solar
power. We can manufacture fuels (biofuels) that would allow modern engines to operate, but not at a rate anywhere near the
present annual usage. The trade off is the lost cropland, or natural habitat to grow the fuel source. The apparent exception
is hydrogen. Present technology to electrolyze hydrogen from water "loses" more than half of the electricity. There are, however,
experiments with high temperature catalysts (see Fuel from Water, Michael A. Peavey) which may prove that concentrated sunlight
for heat can replace a significant portion of the electrical current.
b. Communications. Although it is arguable that some 20th century
humans have become communications "junkies", access to news, and the exchange of information with others is a vital aspect
for security and continued development.
(1) Communications with nearby homes can be carried over a wire
for thousands of feet by sound powered phones, using only the minute current generated by the impact of voice soundwaves on
a microphone.
(2) Long-range communications
appear to be limited to ham-radio. *I would appreciate input on a "sustainable" approach to radio.
6. STRUCTURE.
Any appropriate means to produce sufficiently strong walls and
roof could be considered a success. In many places, the construction material can be earth itself. Even if you are not yet
building on-site, you may want a secure, concealed on-site location. Consider a "septic tank", or "fresh water tank" as your
first construction. Neither should raise suspicion, and either can provide water tight, underground storage space. It will
probably cost more to have a tank installed than to buy either in a heavy gauge plastic.
Soil doesn't stack well, a significant consideration when mounding
or berming you structure, and ESPECIALLY if you're digging. For safety, set your slopes such that the slope retreats horizontally
at least 1 1/2 foot for every 1 foot of vertical rise. I will try to use a 2 foot per 1 foot rise in this document where such
concerns are applicable in calculations.
Engineer in four dimensions, height, width, depth, and time.
Plan so that dividers, furnishings, utilities, etc. can be adjusted to change the primary use of a space.
a. Earthship. One approach to the concept is well presented
in the "Earthship" series of books by Michael Reynolds, ranging from single room ‘pods’ to luxury homes. It's
not that earth is a good insulator, rather the advantage comes from that fact that earth is NOT a good insulator, and it takes
a lot of heat, or cold, to make a large mass of earth change temperature.
While Mr. Reynolds emphasizes use of tires, cans, etc. in his
structures, the functional aspects are relevant regardless of the construction material. See John Hait's book "Passive Annual
Heat Storage" for scientific details of the thermal buffering system.
b. Surface coat block. Stacked concrete block is advocated by
architect Bruce Beerup in his website www.thenaturalhome.com. Blocks are stacked without mortar, then filled and coated with
cement.
c. Post and Shoring. Mike Oehler, in "The $50 &
Up Underground House Book" presents his PSP system (post/shoring/Polyethylene)-basically an underground pole building. Regarding
wood in contact with the soil, in most soils, the area of decay is just below ground level, where soil microbiological activity
is greatest. Often a post can be almost completely rotted out at this level, while the wood several feet deeper in the ground
is still solid. So it’s possible that a post, buried two feet or more into the ground, in an excavation already as much
as six feet or more in the ground, will last a very long time. In addition, Oehler points out the old-time observation that charred wood doesn’t rot. Char the bottom two feet or so, by roasting them over a campfire,
propane torch, etc. For additional insurance, wrap the post bottom in several plastic garbage bags secured with duct tape.
Conventional thinking involves digging a hole into
a hillside and plopping a structure there with a bank of windows facing downhill. This makes the uphill side a solid blank
wall, with the roof probably pitched back into the hill, so drainage from the roof runs into drainage from the hillside. Leaks
are almost inevitable. Mike Oehler suggests an uphill patio, basically a terraced garden area, with its bottom at any desired
height from the floor of the house, and its top blending into the adjacent ground level. It not only solves problems of drainage
and lateral thrust (the pressure of the earth on buried walls), but it can function as an emergency exit or a second entrance.
It can also serve as a built-in greenhouse. Naturally, it admits light and air, even
from the uphill side of the house which would otherwise be a dark blank wall.
d. Monolithic Concrete Dome. One large monolithic (single piece)
dome is presented as energy efficient due to the reduced outside surface area relative to the inside volume. But it is difficult
to build, and bury if you’re incorporating earth berming. An extremely thin dome gets its strength from the curve shape.
The larger the dome, the closer any given area of the dome approaches ‘flat’, losing strength.
e. Clustered Domes. A dome on the scale of a room is a much
less daunting project than a home sized or larger monolithic dome. A home can be built one room at a time, as labor, materials,
and need are presented. Greater curvature per area gives greater strength. I lean toward a clustering of room sized domes,
or a torus (donut) shape. There is POTENTIAL that multiple thin shells, with soil sealed between, have a greater strength
to thickness that a single shell of the same total concrete thickness.
f. Earth. Soil can be formed into bricks, and baked (even in
the sun). It can also be "rammed" into wall molds to form monolithic walls. However, neither is waterproof absent a stabilization
material, such as added concrete.
g. Clay can be "fired" to make it waterproof. Clays
vary considerably in chemistry but most require about 1800 - 2000 F to develop a glassy
ceramic bond. The glassy bond is developed by melting the silica in the clay and allowing the resulting glass to freeze the
remaining grains in place. 2000F can be achieved using natural gas, coal, charcoal etc. and air pressure. Too much heat and
the glass becomes too fluid and the shape becomes brittle. Once heated, the ceramics must be slow cooled because they will
crack if cooled too quickly.
h. Design. Assets, time, and limited labor may not permit large
structures, but small does not have to mean primitive and uncomfortable. Consider motor homes and boats, where individuals
and families live comfortably in facilities the size of the living room in a typical American home. I suggest you tour travel
trailers, motor homes, power or sail boats, etc., for ideas. Aspects to plan for in your home include:
(1) Daylighting. Glass block along the top of all walls that
are exposed to the outside air provides daylighting, as do other higher tech approaches (solartube, and fiber optics). Beyond
daylighting, similar physical methods would permit one light source in a home to provide controllable "nightlight" for the
entire structure. (Note, external reaching systems such as the solartubes easily provide light to maneuver inside to approximately
the same extent you could outside (i.e. in a full moon, you can move about easily).
(2) Straw bales. Where there is sufficient growth, stacked bales,
stucco covered, make viable, high insulation walls (with the added benefit of stopping most pistol, and low power rifle bullets),
or can be used as additional insulation to an existing structure.
(3) Raised bulwarks. Your home can be surrounded by artificial
mounds, to provide visual and audio separation, while not excessively impeding airflow, foot traffic (all species...) as well
as defining and controlling where private property rainfall flows.
(4) Your input?
7. ROOMS.
a. Pantry. A "root cellar" room inside the home along the north
wall. Ice/freezing capabilities increases the food storage options greatly. Solar powered absorbent/refrigerant (no compressor)
was accomplished in the 1800's, and once made, can operate for decades. Tested combinations are:
Lithium bromide/water (LiBr/H2O)
Water/Ammonia (H2O/NH3)
Sodium thicyanate/ammonia (NaSCN/NH3)
Lithium nitrate/amonia (LiNO3/NH3)
Calcium chloride/ammonia (CaCl2/NH3)
Strontium chloride/ammonia (SrCl2/NH3)
Evaporative cooling can make a large difference. A simple approach,
perhaps to hold food, is a covered fired clay pot recessed in sand inside a much larger, unfired clay pot. Keep the sand moist,
and the device shaded. For a ‘higher tech’ option, consider an air tight container, and a vacuum pump. Fill the
container part way with water, and pull a vacuum. As the pressure lowers, the water ‘boils’ at lower temperatures.
While some of the water boils off, some will freeze.
b. Kitchen. As potentially your greatest need for solar heat,
the kitchen needs to have the most unrestricted solar access. Consider keeping the heat, humidity and smells of the kitchen
totally isolated from the air in the rest of the home.
(1) Winston non-imaging concentrators
could provide a constant hot-spot for an oven.
(2) Mirror or lens concentration on coils of circulating oil
could provide a means to route concentrated heat to a "burner" coil arrangement for a stove cooking surface.
c. Bath. If you're using compost toilets, perhaps you want the
bath well vented, separate from the primary home system.
(1) Sanitation. Human urine and manure contains
valuable nutrients needed by the soil. Prior to re-use, the pathogens present must
be eliminated.
(A) Compost toilet. These are low or no water systems where
the human discharges are retained at temperatures and with airflow for bacteria to process the discharges into safe fertilizer.
Urine must either be diverted and processed separately, or most of it is lost to evaporation.
Expedient: Collect human feces and urine in a container (e.g,
a 5 gallon bucket with a toilet seat on it) and after each use, cover the wastes with an organic cover material such as sawdust
(or peat moss, dried leaves, or even dirt if it is dry enough to be absorbent). When the container is full, transfer of the
contents to a compost bin. The cover material serves a dual function of suppressing odors and providing the carbon needed
by decomposer organisms to balance the nitrogen present in urine. Each time the waste/sawdust mixture is transferred to the
compost bin, it is covered with a sufficient amount of coarse organic material such as straw, hay, leaves or weeds. Kitchen
garbage and yard waste may be put in the same compost bin. Once the last addition is made, the contents of the bin are allowed
to compost for a year.
Establish a compost pile of about a meter cube. Effective composting
requires:
Sufficient moisture (50-75%)
Dry browns -
dry leaves and grass, which are high in carbon
Wet greens -
green grass and leaves which are high in nitrogen
Air throughout the pile
Soil organisms.
It is desirable to have a ratio of 25-30 carbon to 1 nitrogen or much more of the dry browns to the wet greens. The exact ratio is not
too critical, but if your pile is not working very well try to get closer to the ratio and/or add some rich soil. If nitrogen
is low some urine can be added. The pile needs to be turned so that all materials reach the desired temperature at some time
during the process.
Daily additions of peelings, stems and stalks from vegetables
and fruits keep the pile loose and temperature up. Piles which are tight have lower temperatures, possibly due to lack of
air which, in turn, prevents the various organisms from working. Piles receiving very moist air will remain moist and tight
due to lack of evaporation of moisture produced by composting and that being deposited on the pile by the users. The composting
process will be slowed or inhibited by excess moisture concentrations.
(B) Heat pasteurization. 30 minutes in a solar oven at 250+
degrees should kill all pathogens. However, a significant portion of the carbon & nitrogen is lost. Lower temperatures
must be 150F (65C) for an hour, 120F (50C) for 24 hours or 115F (46C) for a week.
Solarization. Place a 7.5 centimeter (3 in) layer
of compost from the toilet on the ground and cover it with a clear plastic sheet (1 or 4 mil thickness) when the outdoor temperature
is over 27C (80F). The compost needs to be quite smooth and free of any plants or lumps so that the plastic film will have
intimate contact with the soil and compost. The edges should be sealed so that moisture is not lost. The temperature should
reach at least 55 to 60C (131 to 140F) for about two weeks. The compost should be very moist (50-75%) but not soggy, such that water can be squeezed out of it. If you need, and can generate the temperatures, quick
pathogen treatment can be done, allowing less "careful" disposal.
Pathogens, such as the Hepatitis A virus, which is the most
heat resistant intestinal pathogen, are rendered inert by a temperature of 70 C (158 F) in ten minutes, 75C (167 F) in one
minute, and 80 C (176 F) in five seconds (2)(Harp, 1996 Effect of Pasteurization, Environmental Biology). These temperatures
are easily obtained by simple solar collectors.
(C) Direct soil distribution. The book, "Future Fertility, Transforming
Human Waste into Human Wealth", John Beeby describes a rotation system using perennial crops.
WARNING: Human refuse can have viruses, bacteria, protozoa,
and worms (helminths). There are a number of each type that are possible. In urine, bacteria can cause typhoid or paratyphoid
fever and worms can cause schistosomiasis. In feces, viruses can cause diarrhea, infectious hepatitis and poliomyelitis; bacteria
can cause typhoid fever, paratyphoid fever, food poisoning, dysentery, cholera, and diarrhea; protozoa can cause diarrhea
dysentery, colonic ulceration, and liver abscess. Some of the worm parasites that can be present are hookworm, various flukes,
pinworm, various tapeworms, roundworm, and threadworm. These pathogens are of concern in human refuse.
If human refuse is applied directly to crops, the
length of time that the pathogens survive depends upon soil moisture, pH, type of soil, temperature, sunlight, and organic
matter. Bacteria and viruses cannot penetrate undamaged vegetable skins, but they can survive on the surfaces of vegetables,
especially root vegetables. Sunshine and dry air can help kill the pathogens. If there is any concern about pathogens, compost
should be applied to long-season crops at the time of planting so that sufficient
time passes for the pathogens to die.
To have greater confidence in your compost for your garden,
you can permit just your family to use your compost toilet. Then you know what has been deposited in it. Another option is
to just spread the compost from the toilet only on tree and bush crops. In addition, the more air that can be trapped in the
pile, the better the pile will heat up and deactivate the pathogens that might be present.
(D) Wetland Wastewater Treatment. Mishandled sewage
creates one of the developing world's worst underlying problems. It leads to death and disease, contamination of land and
water, and chronically unsanitary conditions for millions. However, there is a new and unsophisticated sewage treatment which
seems ideal for the needs of the Third World. This simple and inexpensive approach employs various aquatic plants grown in
artificial wetlands. Wastewaters merely trickle through man-made watery gardens in which living plants
clarify the waste stream to the point where it is safe for people, animals, and the environment at large. In principle, this
low-tech process should be ideal for the world's poor countries. Plants grow extremely well in the heat
of tropics. In fact, because there are no winter seasons, the wetland systems should work better there than here. Yet it is
unknown.
(E) A variation of wetland and direct distribution is the Aerobic
Pumice Wick presented by TOM WATSON. An aerobic pumice wick is used to filter, clean and decontaminate greywater and blackwater.
To create a pumice wick, an 18" bed of pumice is laid with a 6" covering layer of soil. Grass and other plants are planted
and roots grow into the pumice bed.
All household wastes drain into an "infiltrator," which captures
solid waste to form a compost and allows liquid to be absorbed in the pumice wick and plant roots. This liquid is taken up
by the plants, which use the nutrients and transpire the water. In the case of too much liquid, the wick acts as a filter
and filtered water drains out of the exit pipe. This prevents liquid rising in the infiltrator which would keep oxygen from
reaching the compost.
Pumice size is determined by fineness of passageways, not aggregate
size. For example "pit run" or "mine run" pumice (2" to pan) is a mix of fine and coarse, but has the same permeability as
"block mix" (1/4" to pan). If pumice or other volcanic aggregates are not available, builders' sand (1/4" down) could be used.
Topsoil should be piled separately during excavation
and used as cover for the wick. Use the subsoil for the berm. There is no need to haul away excavated material: use it! If
your site has no soil (e.g. bedrock conditions) then dirt can be imported and used with a retaining wall. If the soil under
the wick is particularly coarse sand or gravel, then a layer of straw and manure can be laid to help anaerobic bacteria create
a water-impermeable "clogging" layer. Infiltrators and other plastic devices are commonly
available. If unobtainable, a cylinder of stacked bricks or stacked tires may be used as a composting chamber to allow liquid
to escape, but be sure to prevent dirt or pumice from entering the chamber.
Perennial plants are best used because of their permanent roots.
Lawns, shade trees, fruit trees, berries, grape arbors etc. are all suitable as there are no disease vectors transmitted via
the roots.
Tom Watson experiments with, designs and builds
various sustainable projects including pumice wicks, worm toilets, night-sky refrigerators, pumice-crete
buildings, site, land and water analysis, water purification and low-cost housing, and simple bridges.
His contact information is listed on the web as PO Box 8, Embudo NM 87531
(2) All household "gray water" is a valuable asset, see Water
discussion above.
d. Engineering Space. Workshop, machines, batteries, inverters,
chemical storage, etc. Keep these clearly separated from the living space. Aim for no air exchange with the living space.
e. Greenhouse. If capable of being completely separated from
the living space, yet circulate air if desired, plants can be kept warm even if there is no need for the heat in the home.
Consider some plant mass in every room though, i.e. growing under the skylight.
f. Bedrooms. What do you expect will be the ‘makeup’
of your household? (Plan to build a home to last hundreds of years-a home that will house multiple generations.)
g. Outdoor Rooms. Walled and screened (bugs do seem to be everywhere)
outside spaces can provide seasonal, (depending on your climate) if not year round extra living/storage/working space.
8. Equipment and Materials. Dead cars will be valuable
sources of un-natural resources, auto windows, conveniently made of shatter resistant
glass, not to mention sheet steel, wire, tubing, generators, pumps, and electronic parts. The same goes for "useless" appliances.
Where early mankind had to mine and refine metals and minerals, for some time we're likely to find them merely lying about.
9. Storage Program. There are many products and services that
are readily, and cheaply available today, which may quickly become expensive or unavailable. Beyond merely equipping yourself
for the projected work, a storage program may provide valuable trade goods (for that vital widget you forgot about), or the
means for a new start.
a. Fertilizers, not only phosphorus, potassium & nitrogen,
but also micronutrients. Should you find yourself forced to relocate away from your developed planting beds (or ignored making
them) you've got a fallback position from which to start.
b. Fasteners. Nails, screws, bolts, etc.
c. Misc. cheap items:
Canning Jars & Lids with extra inserts
Solar dehydrator
items for meat smoking,
Salt
Black pepper
Molasses
Salting barrels
55 gallon barrels
5 gallon buckets
10. Security.
During a widespread period of socio-economic disturbances (the crash), or war, the possible scenario's are probably NOT limited by
your imagination. Aspects to consider include:
a. Isolation. If you're planning a survivalist,
isolated home-site, you're looking for an area that IS NOT one that will be on the
‘first choice’ list for those who suddenly decide to head for the hills. You also would not want to be the likely
route of a passing casual (hungry, angry) observer who is headed for greener pastures. Ensure your home is not readily discernable
from the surroundings, or does not appear lucrative; then, even if inadvertently encountered, it may be ignored. Rolling terrain,
hills, etc. interfere with long distance viewing and provide multiple concealment locations. An underground, or even earth
bermed home may remain unobserved until someone is almost "on top" of it.
b. Emission Control. If the surrounding territory
is without food, power, and fuel, then cooking odors, blaring music and lights, and smoke will not aid your concealment. The
nutrients of your vegetables are better when fresh than cooked anyway. If you MUST hear your favorite tunes at ear-shattering levels, use headsets. For non-critical night light, take a cue from the navy, and use
red lights, shielded so that direct light from the bulb does not escape the immediate area. You can see to work and move about,
but there's no "beacon" in the sky or in the distance. For night reading or detailed work, be prepared to blackout a room.
Smoke at night may provide a nosey human a clue someone else is around, but unless they're close, or they have a dog, or have
gotten really good at it, they probably won't be able to easily trace the smell back to you.
c. Concealment/Camouflage. Your aquaculture tanks, neat orderly
biointensive beds, greenhouse, solar panels, etc. will probably provide indications to travelers that there may be food available.
When you simply must have a lot of square feet exposed to the sun, concealment is not simple. Rolling, uninviting terrain
is again among the best defenses. If you have the right climate, a lot of space, and the ability, dispersing your food crops
can lessen the odds of discovery, but it makes
your gardening more difficult. Plant along the south slope,
near the bottom of the slope, imitating the natural distribution of plants. Knowledge of "wild" foods, or dispersed planting
of crops that are not generally recognized as food provides additional protection.
d. Deterrents. In a crash scenario, where laws and courtrooms
have failed, interplantings of selected inedible crops may provide protection from human predators, much as there are plants
to protect crops from insects and animals. (Be cautious though of what you, and your household touch, and eat!) Approaches
to your site can be planted with discouragement plants, such as those with thorns, "poison ivy", etc. Think "Halloween" and
brainstorm for ideas that will tend to send intruders in a different direction. As there are ultrasonics that frighten animals
and bugs, are there ultrasonic or subsonic frequencies that affect humans?
e. Intruder detection. What you don't know about, can sneak
up and kill you.
(1) If you can maintain modern powered sensors and alarms, a
modest investment should provide warning of approaching "company". Complete systems, or individual components are available
from various suppliers, such as at http://www.iautomate.com/glossary.htm. The "X-10" modules provide a
means to select just the aspects that meet your needs. Also helpful might be microphones distributed along your perimeter,
and "night vision".
(2) You can also turn to a mobile, voice activated,
self-propelled, auto refueling and self replicating detection system, often referred
to as a dog. I'm not a pet type of person, but a couple of dogs could easily be worth their food.
(3) Expedient low tech. These are things that make
noise when disturbed, or make the intruder make noise, or deter an intruder from a particular path, some of which may be frowned
upon by pre-crash local authorities.
(A) Landscaping. Thorns are a ready deterrent for an unprepared
human. Rocks can make approaches much more difficult to transverse quickly and quietly than smooth soil.
(B) Non-electric
sensors. Bells or other noisemakers. Pull strings, rods, or hydraulics (sealed containers with a hose between them) that ring
a bell.
(C) Parabolic dish "microphones" are available,
which use a stethoscope type headset. Large lens, low power binoculars can assist your low-light vision.
(4) Maintaining a full time human lookout for a single family
homestead would be my last choice, due to fatigue and the waste of labor. (Even in the square mile village where the perimeter
is 4 miles (21,120 feet), if each guard can see 100 yards (300 ft) each way, evenly spaced we're looking at 36 guards each
shift. Assuming two capable adults per each of 120 households, the village could post 6 shifts.)
Tidbits. What type of hostile "enemy" is expected?
(1) Organized Army. As shown in the operations of formal Armies,
against less well equipped and trained adversaries, "strongholds", even those constructed by the oil rich Iraq regime, are
no match for computer guided bombs. Probably the best defense against a formal Army is to simply avoid a conflict in the first
place. Don't be obvious as a desired asset. Don't be an enemy.
(2) Mob. A stronghold has value against a mere mob,
but I would still propose every home has it's own reinforced safe-room, rather than one group location.
Interconnect these safe-rooms with communications wiring, pipe, etc. as technology and resources permit.
(3) Individuals. If not hostile, do you feed them? Even if you
send them on their way, if you've fed them, will they return? Will they return with others, or send others your way, as an
easy "mark" for a free meal? Do you let them camp on the property, or ignore their camp just off the property? How to guide
them to establishing their own sustainable village?
11. Appropriate Technology.
Appropriate technology is that which is available, affordable,
and sustainable in the most likely situations. Numerous articles on creating your own "home grown" technology are available
online at http://www.vita.org and at http://www.itdg.org. When the functional lifespan of your purchases ends, will you
still have a need for the product or service? If so, can you repair or replace it with what you have remaining? The greatest
source of energy on Earth, is the sun. It evaporates water for rain, powers worldwide thermal currents in the air and water,
and thru photosynthesis provides all of the food consumed.
a. If solar panels have a useful life of 20 to 30
years, and I anticipate a continuing need for electrical power, I have that long to find an alternative. Silicon cells are
a high-tech process. Low tech p/v cells can, however, be made from blackened copper,
and thermocouples also offer direct sunlight (heat) to electrical power conversion.
b. Tools. With a modest collection of quality hand tools, even
a neophyte can make modest repairs, disassemble obsolete equipment, or fashion vital devices. Imagine trying to "double dig"
you garden without a shovel, or loosen a bolt without a wrench.
c. Obsolete devices are a potential "goldmine" of parts and
raw materials.
d. Solar/steam micro hydro? TBD - Consider also a large tank of water capable of withstanding modest pressure. Could solar concentration then be used
to generate steam (in an insulated bladder?) to push water to a micro hydro generator?
e. Vertical axis windmill. Even numbers of opposed arms, each
holding flexible material sails. On the power side the wind billows the sail open, pulling a cable to help hold the opposing
sail closed as it moves to windward during rotation.
f. Clay/ceramics. What could be more "appropriate"-dig clay,
add water, form, bake in a solar oven.
12. Knowledge.
a. Web and computer files are the fastest means of finding and
gathering information, but rely on continued computer technology. Unfortunately for surviving humanity, the web may be an
early victim of the collapse. Download to local storage any file you find valuable, and print all of those you find essential.
b. Microfiche is a means of storing a great deal of information
in a small package, that can be read with a child's toy microscope.
c. Books probably remain the most practical means of gathering,
storing, and passing on knowledge. Your local library should be able to order for you on "interlibrary loan" virtually any
book. Read, please! Used bookstores, several of which have online search functions, can yield may priceless "gems".
Plan as though your library is the only one that survives the
crash.
Library Topics:
Sustainable agriculture
Farming
Gardening
Trees
Hydroponics
Organic Farming / Pest Control
Food conversion technologies? (soybeans to tofu, sugar beets
to sugar)
Solar energy
Passive Solar
Photo voltaic
Hot Water
Homesteading
Slaughtering / Meat Preserving
Homebuilding
Tool Making
Cloth Making
Husbandry (horses, cows, pigs, chickens, etc.)
Technology
Old Technology
How things work
Technology Repair
Medicine
Homeopathy
Herbology
Diagnosis
Disease prevention
First Aid
Surgery
Science
Physics
Chemistry
Biology
Math
Elementary Math (Teaching)
Algebra
Geometry / Trigonometry
Calculus
Statistics
Language
Reading (Teaching)
English
Writing
Spanish (simple translation)
French (simple translation)
German (simple translation)
Chinese (simple translation)
Russian (simple translation)
History
General Histories
Maps
Politics
Art / music
People
Literature
100 greatest books of 20th century
100 greatest classics
Major religious texts
13. Transportation.
Gas (and diesel) guzzlers will become rare. Non-fossil fuel sources do not bode well for providing large quantities of cheap fuel. Solar-electric
breakthroughs promise to allow greatly increased hydrogen production, as does fusion if ever safely and fully developed. Absent
breakthroughs, the primary biofuels appear to be plant oils (diesel), and alcohol, which can be used by virtually every gasoline
engine with relatively minor modifications. Some studies claim the plant "comfrey" may be the ideal fuel alcohol soil crop.
Algae also has potential for large scale production.
a. Pedal power, referred to as bicycles, but more properly human
powered vehicles, can meet a great deal of local transportation needs. Modest power augmentation (i.e. electric motor) can
make modest commutes continue to be practical individual endeavors.
b. Biofuel trains. Great increases in the efficiency of burners
and steam engines show potential for continued long distance land travel by efficient trains on well graded and maintained
track.
c. Personal powered vehicles. The cost and complexity of batteries,
fuel cells, etc. may keep personal vehicles from returning to anything approaching the widespread ownership and use of today's
industrial nations.
14. Livestock.
Animals do not necessarily compete with humans for plant foods,
and can provide high quality protein from what would otherwise be plant scraps for the compost pile.
They also provide a source of leather and other materials, and
can serve as beasts of burden.
Burros. The small donkey of the drylands of the world is supremely
adapted to living off the browse and meager feed often available, and for its size is surprisingly strong and a magnificent
beast of burden. Not to be laughed at, the burro can easily be adapted to useful roles on the farm, including basic transportation
and pulling carts.
Chicken. Hybrids will not properly nest. 5-10 chickens, 1 rooster. Feed daily a handful of grain & food scraps. Japanese jungle fowl
(Biosphere II).
Fish. Tilapia, catfish, or local varieties. Build
a 10" minimum, 48" maximum deep pond, 12-15' in diameter. Dip into the pool (as if
a teabag) a bag of horse manure, as food for algae. Use scrap meat and bugs as food for fish. (Grow flies on trays of manure
& water, and drop larvae into the pool)
Goats. Goats may be produced for about the same purposes as
cattle, and their smaller size makes them suitable for many situations. They are often grazed on open range in arid regions.
They are browsers (nibble at a variety of plants), and sometimes are better adapted to production of useful meat than cattle,
especially in heavy shrubland. While goats may be raised for milk, the really fine milk varieties are not well adapted in
the tropics. Goats are sensitive to rain and cold. Nigerian dwarf (Biosphere II).
Ostriches have been around a long time. Estimates
range from 80 to 150 million years. Ostriches have many characteristics of dinosaurs, including claws on their wings, and
over the years they have built up an immune system which baffles scientists today. Ostrich meat is a red meat and has less
fat, less calories and less cholesterol than skinless chicken or turkey. Ostrich oil has many unique medical and therapeutic
benefits and has been used for thousands of years as a cosmetic and beauty aid. Oil is rendered from the fat of the bird,
although there is a very limited amount produced. Ostrich leather is the strongest commercially available leather in the world.
An adult Ostrich will produce 12 - 14 square feet of hide and one hide can make three
pairs of boots. Ostrich eyes have been donated to a number of ophthalmic institutes as the cataracts of the Ostrich have a
remarkable resemblance to the human counterpart. Various experiments have been completed although no final results have been
made official. Ostrich blood has been donated to both cancer and aids research centers because of its unique characteristics.
Initial results have been promising although information is slow to emerge.
The Ostrich is the largest living bird in the world.
It is of the Ratite family, which means flightless bird. The Ostrich is native to Africa, yet thrives in countries all over
the world. Adult males are eight to ten feet in height and weigh 350-400 pounds. A male Ostrich is called
a rooster and a female Ostrich is called a hen. The male is black with white wing tips and tail plumes. The female has light
brown and grey plumage and is slightly smaller than the male. This great bird has two toes, all other birds have three or
four toes. The Ostrich can run at speeds of up to 40 MPH for sustained times. An Ostrich will live to be 50 - 75 years old.
Although an ostrich egg is the largest of all eggs, it is the smallest egg in relation to the size of the bird. The Ostrich
egg will weigh 1600 gm and is equivalent to 2 dozen chicken eggs. An Ostrich Hen can lay 40 -100 eggs per year, averaging
about 60 eggs per year. Ostrich eggs hatch in 42 days. An Ostrich chick grows one foot taller each month until it is 7-8 months old. Females sit on eggs by day; males sit on eggs by night. To soft boil a fresh egg would take one hour.
To hard boil would take 1 1/2 hours. Ostrich farming is a viable alternative agriculture industry, with fine quality leather,
feathers and gourmet meat as the principal products.
Pig. Ossabaw Feral Swine (Biosphere II)
Pigeon. Nest in groups, mate for life, live 7 years, become
attached to their home nest, lay every 6 weeks. Take young birds at 1 lb. just before new eggs are expected.
Rabbit. 3 doe, 1 buck, in hutches out of the rain. Feed greens
along with some oats or bran.
Sheep. In addition to the wool-bearing
sheep of the temperate zone, there exist hair sheep which are much better adapted to the tropics. In addition to their value
in producing meat, such sheep are often used to control weeds in orchards, and thus constitute a profit-producing
biological control.
III. Lifeboat - A survival community.
A individual or family, with an "Earthship" as a home, a large
enough water collection area, and a "biointensive" garden, could potentially live quietly in isolation for the lifetime of
the youngest member of the family. But the technology would probably outlast the residents.
A single family isolation approach is a "dead end" for the family,
and if replicated, probably for humanity. If effect, you’re hoping that you children will be able to leave the isolation,
and amidst the ruins find others who have also been waiting in isolation. What type of survivors do you think you’re
likely to find?
Genetic diversity alone demands survival of more than a single
family. Security, some specialization in skills & knowledge, and the maintenance of technology demands that some minimum
population in the relevant community survive in similar health and living conditions.
First Law. Non-renewable resources
must not be used in a manner that precludes their future re-use, and the maximum sustainable level of
renewable resource use is the minimum reliable level of renewal.
Second Law. Achievement of sustainable society globally requires
that every definable area, whether natural or political, maintain a population and consumption level sustainable within the
applicable borders, using the local resources, or trade in a sustainable manner.
Third Law. Personal or societal experimentation and development
requires the availability of excess resources.
1. Population.
A community must have a large enough population for genetic
safety in reproduction (ideally starting with the maximum possible diversity). That said, it cannot allow it's population
to grown beyond the relevant sustainable life support ecostructure. At the "lifeboat" level, I would urge you keep the total
planned population no higher than the level where you "know" every other family, and that the village does not yet need full-time
paid police, adminstration, etc.
a. Genetic Diversity. I have been unable to locate a definitive
study. However, provided the genetic makeup of the starting population has no inherent problems, consider, in an isolated
population, starting with "unrelated" couples, who each have one boy and one girl. Current law in many U. S. states is that
first cousins may not marry. Just working it out "on paper":
One couple, all children are siblings, dead end.
Two couples, in generation 2 four children can marry, but all
in the third generation are first cousins.
Three couples, in generation 2 six children can marry, but all
in the third generation are first cousins.
Four couples, in generation 2 eight children can marry, and
the following generations CAN avoid first cousin marriages, but each has only one person available as a spouse. In addition,
there is a cycle where both brother and sister of one family must marry the sister and brother of another family. While this
does not technically violate the first cousin rule, it is a repeated pattern of genetic concentration.
Five couples, the following generations can marry and avoid
first cousin marriages, and avoid the four couple forced cycle of brother & sister family "A" marrying sister & brother
of family "B". But in avoiding the brother / sister cycle, it appears each person alternates between only one mate potential
and a choice of two.
Six couples, the following generations generally each have a
choice of three mates that avoids first cousin marriages. This is probably the smallest practical "Lifeboat" to wait out a
dangerous situation.
Six extended families does not, however, provide a wide safety
margin (i.e. for sicknesses or accidents) or the ability to maintain and pass on specialized knowledge and skills, or maintain
and develop much technology.
b. Population stability. Whether a six family lifeboat, or the
global population, the total number of humans MUST NOT grow beyond the reliable renewable resources. In general, when averaged,
it means no one should parent a child beyond their own replacement and the replacement of their mate.
c. Maximum Lifeboat Capacity. In a small community, the individual
can BE an individual. Small communities reduce environmental impact, as the amount of "infrastructure" per person is less
than in a densely populated city. (I.e., while an individual home can use a septic system to return the human sewage to the
land, direct land deposit is not practical for a large apartment building.)
(1) For discussion purposes, I'd toss out 120 or so families
as the upper limit for a "Lifeboat". It's a number where it's not difficult to know every family. I believe it is clearly
below the level where full time (read paid by taxation) administration is required.
(2) In reference to the above population stability factors,
I'll use "standard" families, with extended households (i.e. one set of grandparents resides in the family home), two children
per couple, childbearing at age 20, lifespan of 80. The average extended family home could have 4 to 6 generations living
there. (8 to 12 people)
2. Security.
There is indeed, safety in numbers. A single family can be surprised
while asleep or distracted. A single family can easily be physically outnumbered. Clustered homes raise the stakes for potential
invaders, making it more difficult to determine the exact number and nature of residents and their habits, as well as putting
the help of family and friends within the reach of your voice.
a. Live watch. Regardless of other factors, an awake and observant
person is likely to be an essential factor of a security program. With a large enough population, a lifeboat can maintain
a 24/7 "on duty" watch. There are 168 hours in a week. If security is stood once per week, for a four hour period, there are
42 watch periods. An isolated family would be quickly worn down providing continuous surveillance. Six families would mean
each family would have to provide someone "on
duty" once every day. 120 families would mean each family would
have to provide someone "on duty" only once in nearly every three weeks.
b. Central yard & garden.
c. Fencing efficiency. Putting a secure fence around six independent
square acre homesites requires over 5,000 ft. of fence. If concentrated around the perimeter of clustered homes, it would
enclose 36 square acre sites. For the same cost / effort, either a larger area is enclosed, or the fence can be more substantial.
3. Education Skills & Experience. The smaller that a lifeboat
community is, the greater the importance that each member be trained and experienced in a variety of complimentary emergency
and functional areas.
a. Universal Qualifications.
(1) CPR -
First Aid.
(2) Self-Defense
/ Weapons Skill
(3) A grasp of basic sustainability concepts.
b. Specialists to consider follow. In selection of specific
individuals (if you can select) you not only want someone compatible with your group and your philosophy, but someone who
can teach their "specialty" to others well enough that others can assist the specialist, or take over as the specialist if
need be. Your "specialists" should also be open to learning other skills, so they can continue to be fully integrated functioning
members of the village absent an immediate need for their personal unique training. (i.e. If no one has a tooth problem, what
does your dentist do?)
(1) Modern Technologies (i.e.: existing skills, educated skills)
Doctor
Midwife
Dentist
Chiropractor
Nurse
Naturopath
Arborist
Horticulturist
Farming
Veterinarian
Mechanic
Electrician
Electronics
Plumbing
HVAC engineering
Carpentry
(2) Older Technologies (i.e.: possibly existing as "hobby skills")
Gardening
Wood Carving
Clay working
Hunting
Fishing
Tree cutting
Vegetable canning
Baking
Machine repair
Sewing
Quilting
Pottery
Glass blowing
Weather predicting skills
(3) Lost or Little Used Technologies (i.e.: probably rarely
practiced skills)
Blacksmithing
Horse shoeing
Sheep Sheering
Gunsmithing
Hand yarn and fabric making
Cotton ginning
Slaughtering / hog dressing
Hide tanning
Meat preserving
Home building: Log, Rammed Earth, Straw Bale, Heavy Timber Framing,
etc
Barn raising
Hand tool carpentry
Furniture making
Hand plowing
Hand wheat preparation (drying, winnowing, grinding, etc)
Windmill design / building
Water mill design / building
Wagon / horse buggy building
Boat Building
Stone Mason
Shoe Making
Medicinal plant identification and use
Butter churning
Milking
Cheese making
(4) Future Technologies.
Genetic engineering
Chemical engineering
Nanotechnology
Physics
Electronics
3. Minimizing Risk.
a. Pollution. What would be the point of creating a village
to sustain our families into the future, only to discover it's been located on top of a toxic waste dump. In the USA, I understand
the federal EPA, and state equivalents, track all known significant threats. While still available, obtain all relevant information
on your location.
b. Low natural risks. Winds, floods, earthquakes, volcano's...
These types of disaster are all reduced in impact by advance warnings, and prompt outside assistance. Typical emergency planning
for today is to expect no more than 72 hours before significant help from outside the damaged community is on scene. I suspect
that for quite some time, the advance warnings, and help, will be absent. Inherent risks should be minimized by careful site
selection.
c. Security. There probably already are prepared sites out there,
who are remaining silent for security. This is certainly a consideration, and if I can manage to prompt a group to come together,
once we've reached our initial "critical mass", it is possible that we would also cease public discussion that could lead
to excessive temptations in a time of crisis. The location itself can be the first level of security. If your location is
uninviting, most people won't even think of looking.
4. Transport corridors.
While major highways, railways, etc., may be pathways for refugees
of a "crash", ready access to appropriate paths will be a significant benefit when commerce resumes.
a. Even if transport is reduced to dependence on human power,
i.e. bicycles, would you rather undertake a cross-country trip on foot, carrying your supplies on your back, and walking across
raw land, or with your goods strapped on a bike, and pedaling, even on broken roads? The existing roadway grids could probably
remain as viable pathways for quite some time, even in the absence of repairs, due to the also missing heavy traffic.
b. Use of a bicycle as a primary means of transport imposes
limits (weight, speed, endurance, angle of incline) but also offers advantages (aerobic exercise, no artificial gas generation,
greatly reduced "road" needs). Enter old railway beds. Many old, abandoned railway beds, often stripped of the track and ties,
continue to exist as stone paths.
Significant effort went into providing smooth, gentle
grades and turns for the trains, leading these to be nearly ideal locations for bicycle paths leading between cities. In addition
to their city terminals, early railroads required stopovers for taking on more coal, wood, water, etc . These resupply stops,
now abandoned, may prove to be appropriate locations for an eco-village.
5. Culture & support services.
We can't anticipate everything, and we can't gather everything.
I guess the "plus" side here is that (at least in the USA) it's difficult to find ANYPLACE that is very far from a town. If
the village is created "from scratch", costs and difficulties will be reduced while the resources of a functioning community
are within reach.
6. Creating Infrastructure.
If there is time, finance, and resources, an intentionally constructed,
sustainably oriented village is probably cheaper, and would function better, than attempting to adapt an existing neighborhood.
(Consider building a solar oriented, earth bermed home, vs. modifying an existing home)
a. Roads. If the village is to create, in a brief
period, the physical infrastructure that would have otherwise taken decades, or perhaps indeed centuries to evolve, I expect
that heavy vehicle access will be necessary. But that does not necessarily mean that natural surroundings must be destroyed,
or paved over. If we are anticipating the end of motor vehicle traffic as we know it, interior "roads" could be two paths
of stepping-stones, spaced wheel width apart. Should a road, in the future, need to
be manually removed, or relocated, (or used as building blocks) such individual pavers could far more readily be moved than
the work involved in breaking up a monolithic concrete or asphalt road. I expect that the internal paths will generally only
carry foot traffic, bikes, etc.
b. Service and Supply Court. To put the area into
a size perspective, the original theme park area of "DISNEYLAND" is 70 acres (a square 1750 feet on a side). If we DO NOT
experience "serious" aspects of a crash, this area, in addition to being "downtown" for the village, could contain the operations
of a non-profit entity focused on "sustainable" civilization. Think "theme park" for
sensory attention.
(1) Supply sales. Some services, and supplies, are used so infrequently
that every resident doing it for themselves, or owning the item, is simply irrational. For example, there are times now that
I need a truck, but I don't need one every day. When I do, I rent one. It should be the same with the village.
(2) Education. "Home schooled" children have demonstrated that
traditional classrooms need not be mandated, nor are they necessarily the best approach. The community's educational "floor"
could be set by several sets of K thru 12 home study course materials sets. College level materials should also be collected.
Home schooled does not mean second rate. Education should be
emphasized in all aspects of the village. If there is not an overall crash, the web offers expanding opportunities for education,
without "leaving home". Following a crash, the village should, as soon as possible, document all of the resident knowledge.
(3) Fish farming. Preserves the ocean and creates a local source
of high quality protein. While it can be done on a very small scale for a family, a community project allows creating a much
larger facility, a more diverse biosystem, and provides a larger "farm" than would be the size of individual practical "farms"
combined.
(4) Library. If there is spare space and labor available, a
physical library as is thought of today in an American town can be operated. In a village, though, an alternative that works
for a library (and other functions) is to establish simply a central information resource showing books owned by individuals,
with borrowing being a private transaction.
(5) Money. External currency is needed for outside transactions.
Many intentional communities create their own internal barter unit. There may be advantages or disadvantages to this, to be
determined by the residents.
c. Layout of streets and paths. Rolling terrain provides advantages
not only in security, but in esthetics. The typical U.S. neighborhood development is first bulldozed as flat as possible.
Consider instead rolling terrain, with earth bermed homes.
At each home you could have a wall of glass, looking out onto
your own small garden, deck, natural terrain, etc., which as you reach the edge of the property rises in a gentle slope, then
drops down again on the next property. You see only nature, not your neighbor's wall. Even if there are flat paths or roads
cut thru the terrain to connect the homesites, with planning the "road" could pass such that the homes were not really visible.
The slope and mass between the homes absorbs and deflects noise
and vibration.
Minimum outside open lighting reduces electrical demand, preserves
the beauty of the night sky, and preserves night vision. When the human eye is in the dark and then exposed to light, it takes
at least several minutes for "night vision" to return. In that time, places appear dark and threatening which, if night vision
were preserved, would be relatively clear to see.
Similar communities.
http://www.edenproject.homestead.com/
Eagle Rising -
Flagstaff, AZ
Rex Stephens dinorex@infomagic.net
Jeffrey jsc27 [jsc27@dana.ucc.nau.edu]
NE Arizona. http://freehaven.info freehaven@freehaven.info
Email address: mrtester@freemail.witchwellweb.com
Stephan Martineau www.morningstarcommunity.ch.vu
Jacquie Mackenzie Arizona High Desert Foothills
Eco-Village windtreeranch@hotmail.com Email
address: windtreeranch@direcpc.com
Web Address: http://www.desertshaman.com Mail Address: 4200 E. Summerland Road, Douglas, AZ
85607-9779, United States Phone
Number: 520-364-4611
Sacred Mountain Ranch in the White Mountains of Arizona on 20
acres of evergreens in a mild
climate. David and Jan looking for eleven additional members.
Email address: djl@starband.net Web
Address: http://differentway.net/smr White Mountain Lake, Arizona 85912, United States
Phone Number: 928-587-3887
john peterkin Caverns community at the Grand Canyon Caverns
located on Old Route 66 near Peach
Springs, AZ. johnyyuma@hotmail.com Mail Address: 815 N 4th st,
cottonwood, AZ 86326, United
States
Inspiration: The Forestiere Underground Gardens
located on Shaw Avenue in north Fresno, CA is a complex of underground caverns, grottos, patios and garden courts encircling
the underground home of Baldasare Forestiere. The various sections are inter-connected
with underground passageways and promenades together with an auto tunnel approximately 800 feet long that winds through the
gardens.
These passageways are embellished with planters
of various shapes and sizes, many with built-in recessed seats of hardpan, mortar
and cement. There are columns, arches and domes of hardpan-a native sedimentary stone that is pervasive in the area. Some
ceilings are vaulted and carved like inverted tea cups. Others have skylights adorned with redwood arbors and pergolas with
cascading grapevines. Over his living areas, Forestiere built skylights that were covered in the winter with glass to keep
out the rain, yet allow in natural light.
A wide variety of trees were planted throughout the gardens,
some of them rare. Some of the trees are planted as deep as 22 feet below ground level. A small fish pond, crossed by a foot
bridge, was created in the garden court off the kitchen and bedrooms. Also located in the gardens was an aquarium with a circular
glass bottom through which tropical fish could be observed. On ground level there was a small lake, which has subsequently
been filled in for a parking lot.
All this was done by Baldasare Forestiere, a Sicilian
immigrant. He began his underground retreat in the early 1900s to escape the San Joaquin Valley's excessive heat. After nearly
forty years with hand tools and persistent effort, he succeeded in creating a cool subterranean complex. Forestiere worked
without blueprints or plans, following only his creative instincts and aesthetic impulses. He continued expanding and modifying
the gardens throughout his life. He died in 1946 at the age of sixty-seven.
After his death, the Underground Gardens were opened to the
public as a museum. By varying the size and shape of skylights he created a variety of temperatures throughout his gardens.
The amount of sun his trees got at different levels in the garden, altered fruit cycles and trees produced fruit at unusual
times of the year.
What can WE do with modern tools, our resources and efforts?
Valuable Resources.
www.echonet.org
http://www.forestnursery.com/
http://www.newforestsproject.com
http://agroforestry.net/overstory/index.html
http://www.leafforlife.org/
http://www.perennialvegetables.com/index.htm
http://www.eat-it.com/
7. Location.
To be diplomatic, every location has it’s
unique advantages and disadvantages. Wherever you decide to reside, or reside by default, you must ensure sustainable access
to the above life support factors: air, water, food, shelter, etc. If we are indeed confronted with a worldwide disaster,
natural or manmade, humanity’s future will need numerous and far-flung seed
communities.
Not everyone can live in a "Garden of Eden". Indeed, as the
lyrics of the song go, "...call someplace paradise, kiss it goodbye..."
We seek to reestablish the personal community with
friends and family, and no internal conflicts. Physically, we must incorporate ‘permaculture’ techniques where
we arrange plants, animals, insects, etc. in a self-energizing pattern.
To digress for a moment to a Lifeboat scenario.
For those interested in the creating a lifeboat, something short of a long term sustainable community, yet beyond a mere family
retreat, a large expanse of land is not necessarily required. As shown above, with preparations, a family of four SHOULD be
able to survive on an acre or so. Absent a community, there remain advantages to mere co-location of like minded families.
For those with funds in an IRA, your IRA money CAN be invested
in real estate. Even if we bought through one of the web advertising brokers, at what I'm sure is an inflated price, the land
could surely been seen as an investment.
I encourage each of you to brainstorm on locations. Location,
and the resources of the location, can vary significantly the area needed per person. An "ecological village" will have greater
area requirements than a "survival" location.
Air: An ecologically sustainable village concept includes a
consideration that the village air usage (i.e. CO2 from breathing) is balanced by plant activity in the area under village
control.
Water: The renewable water supply (in the ‘worst’
year) must exceed the total needs of the population, AND allowances for the ‘natural’ surroundings.
Wild flora and fauna: The "common" areas of the village need
space for an appropriate natural ecosystem. While it is a "bonus" if the village property is surrounded by BLM or state preserve
lands, since those are under the "ownership" of someone else, they really should not be counted in overall village planning.
For example, if the village determines that human activity should only predominate on 20% of the area, and that one acre or
so should be dedicated per each family, then the village would need to own 5 acres for each family residing therein.
a. My personal selection for location is "high desert", in Arizona.
My current job is in Arizona, so work on a project here is within the realm of practicality. Over the years, I've grown to
tolerate, if not appreciate the heat. I am the moderator of a yahoo egroup specifically on point. See Atlanaz@yahoogroups.com
(ok, the name is corny).
b. Feel free to submit your proposal for posting.
IV. SOCIETY
Given the discussion above of education, specialization, repair
of technology, let alone possibilities for continued advancement, do you still believe that a few friends in an isolated "village"
can sustain humanity alone?
Village size organizations can function on a barter
system, and may not have much need for formal laws, or a complex economy for internal purposes. Absent a large-scale disaster, they could provide a healthy, nurturing environment for an indefinite number of
generations. But villages appear to be limited in the amount of specialization that can take place, and if unable to communicate,
and conduct physical exchange of unique products, development is so inhibited that mankind's progress would essentially come
to a standstill, and most likely regress.
Upper community limit. It appears in history at numbers approaching
1 million were the upper limit for cities. A city of a million, with say 80% of its population permanent residents of extended
families would have around 100,000 of such. I'm considering the other 20% or so could be considered transitory, coming to
the city on less than a permanent basis for education, to learn or practice a trade or skill, etc. The transitory population
will have some needs that differ significantly from permanent residents.
In addition, the limited resource and population base of small
villages provides little reserve capabilities to cope with disasters. Even minor disturbances in water or food supplies, or
a natural disaster damaging infrastructure, could be a death knell for the village.
The U.S. patent office estimates 1 patentable invention per
year, per every 1,000 people in the population. But don't let statistics mislead you into believing an energetic isolated
small village should expect one "new idea" every two years. It takes creative people, educated, extra time and resources for
significant advances. An information and goods exchange among a network of 100 eco-villages should be expected to yield far
more new inventions each year than the same villages kept isolated. Communication must be maintained.
Not every site has the same resources. Not every group of people
has the same capabilities or interests. Specialization nurtures expertise. Trade nurtures specialization. But how do we avoid
returning to careless loss of resources, and contamination of the environment?
First Law. Non-renewable resources
must not be used in a manner that precludes their future re-use, and the maximum sustainable level of
renewable resource use is the minimum reliable level of renewal.
Second Law. Achievement of sustainable society globally requires
that every definable area, whether natural or political, maintain a population and consumption level sustainable within the
applicable borders, using the local resources, or trade in a sustainable manner.
An economic system becomes fragile when it comes
to depend on external exchange over which it has little control. - Ekholm
Third Law. Personal or societal experimentation and development
requires the availability of excess resources.
Eco-Economy.
"The earth is finite. Its ability to provide for
growing numbers of people is finite. Current economic practices which damage the environment, in both developed and underdeveloped
nations, cannot be continued without the risk that vital global systems will be damaged beyond repair. Pressures resulting
from unrestrained population growth put demands on the natural world that can overwhelm any effort to achieve a sustainable
future." - World Scientists’ Warning to Humanity, the Union of Concerned Scientists.
"In a sustainable society, durability and recycling will replace
planned obsolescence as the economy's organizing principle, and virgin materials will not be seen as a primary source of material
but as a supplement to the existing stock". Lester Brown, Worldwatch Institute
a. When human numbers were small, and the Earth
was covered with a dense, diverse ecology, a tree cut here, an animal or fish taken there, made little difference to the system
as a whole. With our vast numbers now, and technology, we clear-cut entire forests
and eliminate entire species. For all practical human purposes, we have done-and continue to do-damage that will never be
repaired.
b. Any projection of the future is at best a guess, based on
present information. But, using present knowledge and technological capabilities, a sustainable, technological society can
continue to exist, and develop. Try looking at the world as a series of sealed bubbles: your home, your property, your town,
country, the world.
(1) Air. We've got to stop the pollution. We burn fuels for
energy. If we didn't derive the fuel by concentrating the energy component from the environment (carbon from biofuels, hydrogen
from water, etc.) we shouldn't be putting it into the environment. Biofuels and systems to split hydrogen from water will
be major factors.
Limited population is an essential element. The very life processes
of each person place an additional demand on the counterbalancing ecology.
(2) Water. The Ogallala Aquifer underlies approximately 225,000
square miles in the Great Plains region, and has long been a major source of water for agricultural, municipal, and industrial
development. Use began at the turn of the century, and has now greatly surpassed the aquifer's rate of natural recharge. Some
places overlying the aquifer have already exhausted their underground supply as a source of irrigation. Given high power pumps,
it may only be decades before vast areas are pumped "dry". Given the loss of high power pumps, the irrigation will cease.
Probably 1/3 of the U. S. cropland is irrigated in this unsustainable manner, and will then "disappear".
The Colorado River is allocated beyond its natural
flow, and little reaches the ocean of what was once a river that could handle ocean-going
shipping. The next cycle of lessened rainfall in the catchment area will have serious repercussions downstream. Limited population
is an essential element. We do not have the technology to replace the quantities of "fossil water" that have been squandered.
If "global warming" fears materialize, heat and reduced rainfall pose a deadly threat. Ocean water can be desalinized, but
not in sufficient quantities to maintain the present population and the necessary crops, nor is enough energy likely to be
available to transport the water to distant fields and population centers.
(3) Food. Bio-intensive,
perhaps in concert with some aspects of the hydroponic, aeroponic and aquaponic systems. In many areas, "fresh water" is a
severely limiting factor.
Most farmland is "mined out" of trace minerals, and does not
produce appropriately healthy food, and absent chemical fertilizers, is incapable of producing a quantity of food anywhere
near present production.
Cropland must have trace minerals restored, and be maintained
in such a manner that these minerals are returned to the land.
We can grow terrific crops, and properly nourish a few, or grow
a greater quantity of lesser quality crops and feed a greater quantity of less healthy people.
Industrialized food production, processing, long distance shipping,
etc., obviously subjects this vital life support aspect to far greater "uncertainties" than does growing food locally.
c. Trade. It does not appear probable that long distance shipping
of products, in particular overland or by air, is sustainable absent fossil fuels. While many of the components of high tech
devices require such unique processes that they are not likely to be made "locally" in many locations, there is likewise no
need for entire devices to be assembled, packaged, and shipped.
In example, the high tech manufacturing of "essential"
components for a computer are nowhere near the overall mass and volume of a complete computer. Frames, cases, connectors,
etc. can be somewhat hand-crafted locally for assembly.
d. Enterprises.
(1) Manufacturing. "Key" components of systems or devices.
bicycle
windmills
fuel cell
solar cell
light rail
(2) Energy generation / storage.
(3) Experimentation.
Selective surfaces are materials that reflect, or absorb, given
qualities of energy or matter. A diode only allows electricity to move in one direction. Certain membranes allow water to
pass through, but exclude "contaminants", including dissolved salts.
Thin films can block or reflect selected portions of sunlight.
High concentrations of u/v, an ionizing frequency of light, can provide significant "excitation" of water molecules such that
the electricity needed to electrolyze water is BELOW that which can be generated when the hydrogen is again burned or used
in a fuel cell. This is not an over unity device, since the extra energy is coming from sunlight. If the complete spectrum
of light is used, at the concentrations necessary the water heats too much, decreasing the electrolysis efficiency and making
more complex containment necessary.
(4) Services.
(A) Senior Center. Assisted living homes, in the
pre-crash economy, often receive significant income for providing relatively low levels of service to
residents. A "sub-arcology" appears to be a structure compatible with this type of business venture and
meeting a "fail safe" criteria. If there is no crash, it's an income producing business. If there IS a crash, there is in
place a facility capable of housing and providing for at least a significant number of the owners.
(B) Campground. Also pre-crash.
(C) Economy
An ecological economy, is by its own terminology, NOT consumption
based. The fossil fueled industrial age COULD have given everyone high quality, high durability goods, and permanently lifted
worldwide living standards. What we DID was produce at the lowest cost, lowest quality possible, a "disposable" product.
With current economic thinking, advertising, and business practices,
an ecological economy appears at first to be an antithesis of a healthy economy. It does NOT seek change for the mere sake
of change, deliberate repeat business by planned obsolescence, etc.
Nanotechnology promises a revolution in materials engineering,
and product construction.
(1) Quality. A thoughtfully designed and executed product can
have lifetime appeal and usefulness, and be a cherished heirloom, passing from generation to generation. A quality item is
less likely to be replaced merely because something "new and different" is produced.
(2) Durability. Don't you have that favorite shirt, pair of
shoes, watch, etc., that you just love to wear?
(3) Standardization of components. Imagine trying
to play music if every record, tape, or CD required a special player. Along the lines of the shipping discussion above, standardized
components and subcomponents, assembled to make various devices, yet designed to be re-arranged
at the consumer level, leads to enhanced recycling.
(4) Recycling, of not just materials, but individual components
and assemblies. Current electronic devices, while "neat", are in most cases not repairable, requiring the entire device to
be discarded when there is a single component malfunction.
(5) Food. We need food of the highest nutrition, in appropriate
proportions. Grain, potatoes, rice, etc. continues to be presented, even by physicians, as the base of the food pyramid. These
carbohydrate items are most profitable for farmers, and for the food processing industry, as cheap carbohydrates are processed
into "snack foods". Most of these contain little nutrition, though, beyond calories, and certainly do not qualify as a healthy
diet. Consider for a moment; have you ever heard the phrase "corn fed", or "grain fed" in reference to fattening up cattle,
hogs, etc. for the slaughter?
As discussed earlier, much of the farmland in use
today has been depleted of the micro-nutrients we need. Yes, plants can still be forced
to grow on the depleted soil, but the food cannot contain the nutrients we need. The growing medium must be fully restored,
from "outside" sources if necessary, and the minerals eaten must be returned to the soil.
--------------------------------------------------------------------------------
Subject: Surviving through Peak Oil in different cultures
Name: Keith Thomas
E-Mail: keith@evfit.com
URL: www.evfit.com
Location: Canberra, Australia
Date: 2005-07-29 15:47:30
Comments: Ronald Greek wrote a shorter version of the above:
http://wolf.readinglitho.co.uk/downloads/What_to_Do.doc In mid-2005 I modified his original for Australian conditions
and to account for recent developments. If you'd like a copy, please e-mail me.
--------------------------------------------------------------------------------
Subject: die off
Name: Chris Austin
E-Mail: mybuddyisagun3@hotmail.com
Location: evanston, illinois, united stats
Date: 2005-07-23 04:59:37
Comments: Ok I'm just a kid so i don't know that much, but i
do know that you can not know exactly what the die off will be because in my opinion there are two major possibilities. 1)That
in about a period of 5-10 years oil prices will increase dramatically as Alaska and Antarctica run out in that period many
people will be going crazy trying to survive with a slow die out from people in big cities trying to get out to the farm areasand
killing people or starving maybe creating communities and the government will have the current president go have his own very
well made special farm place lots of guns while the rest of the army either dsbands with people running off by themselves
to families and the rest killing other people to stop violence. Also almost none of the communties made in these years and
before will survive. 2) Which is the prime one that would be best for these communities is that oil companies had waited till
oil prices got pretty high then started selling the oil they had gotten from alaska and the antarctic whihc is plausible because
this might make big cities have more time to think about what to do because they had had to deal with the high gas prices
but then then the oil companies would probably keep the price the same and the heads would make there own villages then suddenly
all the oil would run out when people thought it was steady because the oil companies would go to desperate measures to stop
people from know especially the Bin Ladins probably and then all those societies that had been used to the high gas prcies
would lose all the gas and would have a medium death-high death rate. Depending on there dependence on oil. Another thing
is you can not exclude that nearing this all of the villages should stop telling where they are because most likely people
would look it up near the end of the internet also the governments villages might use there saved oil and small military to
go and kill your villages. Though if enough and spaced out well enough also dependings on what the government does there will
most likely be a less than 1/10 if the villages if there were only a low number of villages surviving but if those villages
if enough united they might be able to defend and possibly ally with the governments depending on what government. In the
U.S. the government would most likely build many villages and have what needed scientist they could go there along with military
at many villages or try and have villages made for as many people as possible which would just mean all the villages were
less likely to survive though the first one is more likely depending on the president or it could be a mix. And then if the
first is the one which would be the most inteligient the government would seek out the other villages and try to restart the
U.S. most likely. This is my opion lol long.
--------------------------------------------------------------------------------
Subject: Communication
Name: T. Eicher
E-Mail: ab0di@direcway.com
Location: Washington, IA, USA
Date: 2005-06-03 09:47:04
Comments: PSK31 is probably the best mode for worldwide low
power radio communication (see http://psk31.com/). PSK31 requires a computer with sound card. Small single frequency
tranceiver kits are available for around $100 (see http://smallwonderlabs.com/). 20 meters is a good worldwide band, 40 and 80 M are better for
local (continental) communications. Power input is 12-14v @ 1 amp. A light wieght dipole cut to the appropriate frequency
is all the antenna you need. You also need an amateur radio license to use the radio. Since the morse code requirements have
been lowered, a license is fairly easy to get (see www.arrl.org).
--------------------------------------------------------------------------------
Subject: oil
Name: assad
E-Mail: gwrib@yahoo.com
URL: http://aramblogfa.com
Location: mansjedsolyman, khouzestan, iran
Date: 2005-03-19 01:48:12
Comments: hi dear i read your articles about oil that is very
best tanks
--------------------------------------------------------------------------------
Subject: Re: Genetic Diversity - surely faster than that?
Name: Cormac
E-Mail: cormacbracken@fastmail.fm
URL: http://rubberbucket.com
Location: Bangkok, Thailand
Date: 2004-11-05 12:16:21
Comments: In response to Kirk's comment below: I'd suggest that
most of the mass die-off occurs within the first 5-10 years of the start of the collapse. Okay it depends what we mean by
"start", we've already had Iraq, but let's say start means the man in the street starts to see the problem. That's when energy
rationing goes into effect. From there, mass death happens when power stations can't stay online enough to supply clean water
and pump away sewage in the big cities. At that point we're weeks away from epidemics. Any group that manages to survive long
enough to raise a second generation, are probably your friends.
--------------------------------------------------------------------------------
Subject: admirable analysis of energy-descent engineering options
Name: Toomas (Tom) Karmo
E-Mail: verbum@interlog.com
URL: http://www.metascientia.com
Location: Toronto, ON, Canada
Date: 2004-10-30 20:20:30
Comments: This is an extraordinarily good essay, covering many
engineering points in convincing detail. On finishing it, I was left with the conviction that if enough people, especially
enough of the ecology-minded scientists and engineers, think about the problems facing us in a sufficiently analytical and
concrete spirit, humanity DOES have a future. Could the author please keep writing? Tom Karmo (cf my http://www.metascientia.com, 'Literary' section, Web-readable book entitled 'Utopia 2184:
A Green Manifesto in the Traditions of the Permaculture and Catholic-Worker Movements'.)
--------------------------------------------------------------------------------
Subject: a. Genetic Diversity.
Name: Kirk Porubec
E-Mail: kprobuec2@yahoo.com
Location: Saint Peters, MO, Saint Charles
Date: 2004-10-10 16:59:32
Comments: Theory is all well and good. I am a theorist as well.
However, the idea that one should be concerned about 3rd generation problems is insane. Collapse and post-collapse are two
seperate problems. The actual collapse phase will have oil production dropping at 2-3 percent per year and most of the mass
dieoff will occur within 50 years of the beginning of the collapse. While there is a marginal chance for reaching the third
generation in 50 years, who cares? They can wait a few years until mass die-off ceases. At that point, contact with others
is easier, and survival will become more a matter of food, and less a matter of avoiding horrible death. During the initial
phase, primary concern is on avoiding man-related death. Polution, bullets, and diseases, ect.